Suchergebnisse - deep convolutional autoencoder network

  1. 1

    Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction von D’Angelo, Gianni, Palmieri, Francesco

    ISSN: 1084-8045, 1095-8592
    Veröffentlicht: Elsevier Ltd 01.01.2021
    Veröffentlicht in Journal of network and computer applications (01.01.2021)
    “… For this purpose, a novel autoencoder-based deep neural network architecture …”
    Volltext
    Journal Article
  2. 2

    DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network von Guo, Shuhan, Zhang, Qin, Fu, Xiaolong, Zheng, Guimei, Zhou, Hao

    ISSN: 1051-2004
    Veröffentlicht: Elsevier Inc 01.01.2026
    Veröffentlicht in Digital signal processing (01.01.2026)
    “… This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE …”
    Volltext
    Journal Article
  3. 3

    Classification of Atypical White Blood Cells in Acute Myeloid Leukemia Using a Two-Stage Hybrid Model Based on Deep Convolutional Autoencoder and Deep Convolutional Neural Network von Elhassan, Tusneem A., Mohd Rahim, Mohd Shafry, Siti Zaiton, Mohd Hashim, Swee, Tan Tian, Alhaj, Taqwa Ahmed, Ali, Abdulalem, Aljurf, Mahmoud

    ISSN: 2075-4418, 2075-4418
    Veröffentlicht: Switzerland MDPI AG 05.01.2023
    Veröffentlicht in Diagnostics (Basel) (05.01.2023)
    “… Recent advancements in artificial intelligence (AI) have led to numerous medical discoveries. The field of computer vision (CV) for medical diagnosis has …”
    Volltext
    Journal Article
  4. 4

    Segmentation of digital rock images using deep convolutional autoencoder networks von Karimpouli, Sadegh, Tahmasebi, Pejman

    ISSN: 0098-3004
    Veröffentlicht: Elsevier Ltd 01.05.2019
    Veröffentlicht in Computers & geosciences (01.05.2019)
    “… Recently, deep learning and machine learning algorithms have proposed several algorithms working with images, including Convolutional Neural Networks (CNN …”
    Volltext
    Journal Article
  5. 5

    Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network von Qu, Zhiyu, Wang, Wenyang, Hou, Changbo, Hou, Chenfan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… ) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs …”
    Volltext
    Journal Article
  6. 6

    Rapid and Accurate Prediction of Soil Texture Using an Image-Based Deep Learning Autoencoder Convolutional Neural Network Random Forest (DLAC-CNN-RF) Algorithm von Zhao, Zhuan, Feng, Wenkang, Xiao, Jinrui, Liu, Xiaochu, Pan, Shusheng, Liang, Zhongwei

    ISSN: 2073-4395, 2073-4395
    Veröffentlicht: Basel MDPI AG 01.12.2022
    Veröffentlicht in Agronomy (Basel) (01.12.2022)
    “… This study proposed a flexible smartphone-based machine vision system using a deep learning autoencoder convolutional neural network random forest (DLAC-CNN-RF …”
    Volltext
    Journal Article
  7. 7

    Seismic random noise suppression using deep convolutional autoencoder neural network von Song, Hui, Gao, Yang, Chen, Wei, Xue, Ya-juan, Zhang, Hua, Zhang, Xiang

    ISSN: 0926-9851, 1879-1859
    Veröffentlicht: Elsevier B.V 01.07.2020
    Veröffentlicht in Journal of applied geophysics (01.07.2020)
    “… Contaminated seismic data seriously affect subsequent seismic data processing and imaging. In this paper, we propose a deep convolutional autoencoder neural network for denoising, which consists of encoding and decoding frameworks …”
    Volltext
    Journal Article
  8. 8

    A stacked autoencoder‐based convolutional and recurrent deep neural network for detecting cyberattacks in interconnected power control systems von D'Angelo, Gianni, Palmieri, Francesco

    ISSN: 0884-8173, 1098-111X
    Veröffentlicht: New York John Wiley & Sons, Inc 01.12.2021
    Veröffentlicht in International journal of intelligent systems (01.12.2021)
    “… It is based on stacked deep neural networks, which have proven to be capable to timely identify and classify attacks, by autonomously eliciting knowledge …”
    Volltext
    Journal Article
  9. 9

    Inpainting non-anatomical objects in brain imaging using enhanced deep convolutional autoencoder network von Kumar, Puranam Revanth, Shilpa, B, Jha, Rajesh Kumar, Raju, B Deevena, Mohammed, Thayyaba Khatoon

    ISSN: 0973-7677, 0256-2499, 0973-7677
    Veröffentlicht: New Delhi Springer India 18.05.2024
    Veröffentlicht in Sadhana (Bangalore) (18.05.2024)
    “… In this paper, we proposed a deep convolutional autoencoder network with improved parameters as a robust method for inpainting non-anatomical objects in MRI and CT images …”
    Volltext
    Journal Article
  10. 10

    Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network von Wang, Wei, Zhao, Mengxue, Wang, Jigang

    ISSN: 1868-5137, 1868-5145
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
    “… Android security incidents occurred frequently in recent years. To improve the accuracy and efficiency of large-scale Android malware detection, in this work, we propose a hybrid model based on deep autoencoder (DAE …”
    Volltext
    Journal Article
  11. 11

    Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image von Liu, Baisen, Kong, Weili, Wang, Yan

    ISSN: 1530-8669, 1530-8677
    Veröffentlicht: Oxford Hindawi 2022
    “… In this paper, we propose a novel deep convolutional asymmetric autoencoder-based spatial-spectral clustering network (DCAAES2C-Net …”
    Volltext
    Journal Article
  12. 12

    Ensemble of feature augmented convolutional neural network and deep autoencoder for efficient detection of network attacks von B, Selvakumar, M, Sivaanandh, K, Muneeswaran, B, Lakshmanan

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 04.02.2025
    Veröffentlicht in Scientific reports (04.02.2025)
    “… ). The proposed work consists of three phases: (i) Feature Augmented Convolutional Neural Network (FA-CNN) (ii) Deep Autoencoder (iii …”
    Volltext
    Journal Article
  13. 13

    Classification of Motor Imagery EEG Signals Based on Deep Autoencoder and Convolutional Neural Network Approach von Hwaidi, Jamal F., Chen, Thomas M.

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2022
    Veröffentlicht in IEEE access (2022)
    “… Deep learning approaches, particularly the detection and analysis of motor imagery signals using convolutional neural network (CNN …”
    Volltext
    Journal Article
  14. 14

    DCAVN: Cervical cancer prediction and classification using deep convolutional and variational autoencoder network von Khamparia, Aditya, Gupta, Deepak, Rodrigues, Joel J. P. C., de Albuquerque, Victor Hugo C.

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.08.2021
    Veröffentlicht in Multimedia tools and applications (01.08.2021)
    “… We have adopted combination of convolutional network with variational autoencoder for data classification …”
    Volltext
    Journal Article
  15. 15

    Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting von Khodayar, Mahdi, Mohammadi, Saeed, Khodayar, Mohammad E., Wang, Jianhui, Liu, Guangyi

    ISSN: 1949-3029, 1949-3037
    Veröffentlicht: Piscataway IEEE 01.04.2020
    Veröffentlicht in IEEE transactions on sustainable energy (01.04.2020)
    “… This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation …”
    Volltext
    Journal Article
  16. 16

    Few-shot traffic classification based on autoencoder and deep graph convolutional networks von Xu, Shengwei, Han, Jijie, Liu, Yilong, Liu, Haoran, Bai, Yijie

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 15.03.2025
    Veröffentlicht in Scientific reports (15.03.2025)
    “… , and implement policy management. As graph convolutional networks (GCNs) take into account not only the features of the data itself, but also the relationships among sets of data during classification …”
    Volltext
    Journal Article
  17. 17

    Particle Swarm Optimization for Efficiently Evolving Deep Convolutional Neural Networks Using an Autoencoder-Based Encoding Strategy von Yuan, Gonglin, Wang, Bin, Xue, Bing, Zhang, Mengjie

    ISSN: 1089-778X, 1941-0026
    Veröffentlicht: IEEE 01.10.2024
    Veröffentlicht in IEEE transactions on evolutionary computation (01.10.2024)
    “… Deep convolutional neural networks (DCNNs) have achieved surpassing success in the field of computer vision, and a number of elaborately designed networks refresh the performance records in benchmark datasets …”
    Volltext
    Journal Article
  18. 18

    Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising von Paul, Arati, Kundu, Ahana, Chaki, Nabendu, Dutta, Dibyendu, Jha, C. S.

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.01.2022
    Veröffentlicht in Multimedia tools and applications (01.01.2022)
    “… The proposed dual branch deep neural network based architecture works on wavelet transformed bands …”
    Volltext
    Journal Article
  19. 19

    Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder von Zhao, Yu, Dong, Qinglin, Chen, Hanbo, Iraji, Armin, Li, Yujie, Makkie, Milad, Kou, Zhifeng, Liu, Tianming

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.12.2017
    Veröffentlicht in Medical image analysis (01.12.2017)
    “… •A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases …”
    Volltext
    Journal Article
  20. 20