Suchergebnisse - deep convolutional autoencoder (ConvAE)

Andere Suchmöglichkeiten:

  • Treffer 1 - 17 von 17
Treffer weiter einschränken
  1. 1

    Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics von Yousefi, Bardia, Kawakita, Satoru, Amini, Arya, Akbari, Hamed, Advani, Shailesh M., Akhloufi, Moulay, Maldague, Xavier P. V., Ahadian, Samad

    ISSN: 2077-0383, 2077-0383
    Veröffentlicht: Switzerland MDPI AG 14.07.2021
    Veröffentlicht in Journal of clinical medicine (14.07.2021)
    “… First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE …”
    Volltext
    Journal Article
  2. 2

    ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition von Thakur, Dipanwita, Biswas, Suparna, Ho, Edmond S. L., Chattopadhyay, Samiran

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2022
    Veröffentlicht in IEEE access (2022)
    “… , accelerometer and gyroscope data. Convolutional neural networks (CNNs), autoencoders (AEs), and long short-term memory (LSTM …”
    Volltext
    Journal Article
  3. 3

    ConvAE: A New Channel Autoencoder Based on Convolutional Layers and Residual Connections von Ji, Dong Jin, Park, Jinsol, Cho, Dong-Ho

    ISSN: 1089-7798, 1558-2558
    Veröffentlicht: New York IEEE 01.10.2019
    Veröffentlicht in IEEE communications letters (01.10.2019)
    “… In this letter, we propose ConvAE, a new channel autoencoder structure. ConvAE uses residual blocks with convolutional layers …”
    Volltext
    Journal Article
  4. 4

    Interpretable regional meteorological feature extraction enhances deep learning for extended 120-h PM2.5 forecasting von Liu, Xinyi, Pu, Xueting, Lu, Chengwei, Zhang, Han, Li, Tao, Grieneisen, Michael L., Li, Jucheng, Ma, Ning, Yan, Chang, Zhan, Yu, Yang, Fumo

    ISSN: 0959-6526
    Veröffentlicht: Elsevier Ltd 10.12.2024
    Veröffentlicht in Journal of cleaner production (10.12.2024)
    “… We used convolutional autoencoders (ConvAEs) to extract regional meteorological features (RMFs …”
    Volltext
    Journal Article
  5. 5

    Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder von Duman, Elvan, Erdem, Osman Ayhan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… In this paper, we propose a framework (OF-ConvAE-LSTM) to detect anomalies using Convolutional Autoencoder and Convolutional Long Short-Term Memory in an unsupervised manner …”
    Volltext
    Journal Article
  6. 6

    An Application of Deep Learning Technique to Improve Subseasonal to Seasonal Rainfall Forecast over Java Island, Indonesia von Raharja, Adyaksa Budi, Faqih, Akhmad, Setiawan, Amsari Mudzakir

    ISSN: 2086-4639, 2460-5824
    Veröffentlicht: Bogor Agricultural University 15.11.2022
    Veröffentlicht in Jurnal pengelolaan sumberdaya alam dan lingkungan (15.11.2022)
    “… However, the forecast remains challenging due to its lack of skill. This study applies Convolutional AutoEncoders (ConvAE …”
    Volltext
    Journal Article
  7. 7

    Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models von Kow, Pu-Yun, Liou, Jia-Yi, Sun, Wei, Chang, Li-Chiu, Chang, Fi-John

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Veröffentlicht: England Elsevier Ltd 01.02.2024
    Veröffentlicht in Journal of environmental management (01.02.2024)
    “… This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE …”
    Volltext
    Journal Article
  8. 8

    Latent space representation of electronic health records for clustering dialysis-associated kidney failure subtypes von Onthoni, Djeane Debora, Lin, Ming-Yen, Lan, Kuei-Yuan, Huang, Tsung-Hsien, Lin, Hong-Ming, Chiou, Hung-Yi, Hsu, Chih-Cheng, Chung, Ren-Hua

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.12.2024
    Veröffentlicht in Computers in biology and medicine (01.12.2024)
    “… This matrix structure was achieved using a unique data cutting method. Latent space transformation was facilitated using a convolution autoencoder (ConvAE …”
    Volltext
    Journal Article
  9. 9

    Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography von Tempelaere, Astrid, He, Jiaqi, Van Doorselaer, Leen, Verboven, Pieter, Nicolai, Bart, Valerio Giuffrida, Mario

    ISSN: 0168-1699
    Veröffentlicht: Elsevier B.V 01.11.2024
    Veröffentlicht in Computers and electronics in agriculture (01.11.2024)
    “… •Our model outperforms the traditional autoencoder architecture. A novel fully convolutional autoencoder (convAE …”
    Volltext
    Journal Article
  10. 10

    Deep representation learning of electronic health records to unlock patient stratification at scale von Landi, Isotta, Glicksberg, Benjamin S., Lee, Hao-Chih, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T., Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2398-6352, 2398-6352
    Veröffentlicht: London Nature Publishing Group UK 17.07.2020
    Veröffentlicht in NPJ digital medicine (17.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE …”
    Volltext
    Journal Article
  11. 11
  12. 12

    Deep Learning for Automatic Quality Grading of Mangoes: Methods and Insights von Wu, Shih-Lun, Tung, Hsiao-Yen, Hsu, Yu-Lun

    Veröffentlicht: IEEE 01.12.2020
    “… ; and, a family of self-defined convolutional autoencoder-classifiers (ConvAE-Clfs) inspired by the claimed benefit of multi-task learning in classification tasks …”
    Volltext
    Tagungsbericht
  13. 13

    Deep Crowd Anomaly Detection by Fusing Reconstruction and Prediction Networks von Sharif, Md. Haidar, Jiao, Lei, Omlin, Christian W.

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.04.2023
    Veröffentlicht in Electronics (Basel) (01.04.2023)
    “… Many existing deep anomaly detection models are based on reconstruction errors, where the training phase is performed using only videos of normal events and the model is then capable to estimate …”
    Volltext
    Journal Article
  14. 14

    Deep representation learning of electronic health records to unlock patient stratification at scale von Landi, Isotta, Glicksberg, Benjamin S., Lee, Hao-Chih, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T., Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2398-6352
    Veröffentlicht: London Nature Publishing Group UK 17.07.2020
    Veröffentlicht in NPJ digital medicine (17.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE …”
    Volltext
    Journal Article
  15. 15

    Rapid prediction of grain boundary network evolution in nanomaterials utilizing a generative machine learning approach von Wang, Yuheng, Kazemi, Amirreza, Jing, Taotao, Ding, Zhengming, Li, Like, Yang, Shengfeng

    ISSN: 2352-4316, 2352-4316
    Veröffentlicht: Elsevier Ltd 01.08.2024
    Veröffentlicht in Extreme Mechanics Letters (01.08.2024)
    “… ) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN …”
    Volltext
    Journal Article
  16. 16

    Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale von Landi, Isotta, Glicksberg, Benjamin S, Hao-Chih, Lee, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T, Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.07.2020
    Veröffentlicht in arXiv.org (18.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE …”
    Volltext
    Paper
  17. 17

    Deep Learning for Automatic Quality Grading of Mangoes: Methods and Insights von Shih-Lun, Wu, Hsiao-Yen, Tung, Yu-Lun, Hsu

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.11.2020
    Veröffentlicht in arXiv.org (23.11.2020)
    “… ; and, a family of self-defined convolutional autoencoder-classifiers (ConvAE-Clfs) inspired by the claimed benefit of multi-task learning in classification tasks …”
    Volltext
    Paper