Suchergebnisse - data‐driven RMPC algorithm

  • Treffer 1 - 8 von 8
Treffer weiter einschränken
  1. 1

    Constrained robust model predictive control embedded with a new data-driven technique von Yang, L, Lu, J, Xu, Y, Li, D, Xi, Y

    ISSN: 1751-8644, 1751-8652
    Veröffentlicht: The Institution of Engineering and Technology 05.11.2020
    Veröffentlicht in IET control theory & applications (05.11.2020)
    “… To overcome these problems, a new data-driven control methodology is presented that integrates the data-driven concept into robust model predictive control (RMPC …”
    Volltext
    Journal Article
  2. 2

    Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control von Chen, Wei-Han, You, Fengqi

    ISSN: 1063-6536, 1558-0865
    Veröffentlicht: New York IEEE 01.05.2022
    Veröffentlicht in IEEE transactions on control systems technology (01.05.2022)
    “… This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate …”
    Volltext
    Journal Article
  3. 3

    Constrained data-driven RMPC with guaranteed stability von Yang, Lingyi, Lu, Jianbo, Xu, Yunwen, Li, Dewei, Xi, Yugeng

    Veröffentlicht: JSME 01.06.2019
    Veröffentlicht in 2019 12th Asian Control Conference (ASCC) (01.06.2019)
    “… Aimed at this proposal, this paper proposes a new control technique which adds data-driven representation skills into the robust model predictive controller (RMPC …”
    Volltext
    Tagungsbericht
  4. 4

    Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment von Mahmood, Farhat, Govindan, Rajesh, Bermak, Amine, Yang, David, Al-Ansari, Tareq

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 01.08.2023
    Veröffentlicht in Applied energy (01.08.2023)
    “… •An analytical and data-driven model is developed to analyse the greenhouse.•Data-driven artificial neural network is used as the prediction model …”
    Volltext
    Journal Article
  5. 5

    Multi-zone building control with thermal comfort constraints under disjunctive uncertainty using data-driven robust model predictive control von Hu, Guoqing, You, Fengqi

    ISSN: 2666-7924, 2666-7924
    Veröffentlicht: Elsevier Ltd 01.02.2023
    Veröffentlicht in Advances in applied energy (01.02.2023)
    “… •A novel data-driven RMPC framework for multi-zone building thermal comfort control …”
    Volltext
    Journal Article
  6. 6

    Robust predictive control of coupled water tank plant von Kang, Tiao, Peng, Hui, Zhou, Feng, Tian, Xiaoying, Peng, Xiaoyan

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.08.2021
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.08.2021)
    “… The difficulty of model-based liquid level control such as Robust Model Predictive Control (RMPC) is hard to obtain an accurate model of the plant or need accurate steady-state information which is hard to be obtained in practice …”
    Volltext
    Journal Article
  7. 7

    Robust Constrained Model Predictive Control of Irrigation Systems Based on Data-Driven Uncertainty Set Constructions von Shang, Chao, Chen, Wei-Han, You, Fengqi

    ISSN: 2378-5861
    Veröffentlicht: American Automatic Control Council 01.07.2019
    Veröffentlicht in Proceedings of the American Control Conference (01.07.2019)
    “… We propose a novel data-driven robust model predictive control (RMPC) approach for irrigation system operations, where uncertainty in evapotranspiration and precipitation forecast is explicitly taken into account …”
    Volltext
    Tagungsbericht
  8. 8

    Data-Based Robust Model Predictive Control Under Conditional Uncertainty von Shang, Chao, Chen, Wei-Han, You, Fengqi

    ISBN: 9780128186343, 0128186348
    ISSN: 1570-7946
    Veröffentlicht: 2019
    Veröffentlicht in Computer Aided Chemical Engineering (2019)
    “… In this work, a novel data-driven robust model predictive control (RMPC) framework is outlined for optimal operations and control of energy systems …”
    Volltext
    Buchkapitel