Suchergebnisse - conditioning variational (autoencoder(cvae) OR autoencoder(cae))*

Andere Suchmöglichkeiten:

  • Treffer 1 - 19 von 19
Treffer weiter einschränken
  1. 1

    Development of a surrogate model to improve the efficiency of groundwater level fluctuation pattern-based hydrologic properties evaluation von Jeong, Jiho, Jeong, Jina

    ISSN: 0022-1694, 1879-2707
    Veröffentlicht: Elsevier B.V 01.04.2023
    Veröffentlicht in Journal of hydrology (Amsterdam) (01.04.2023)
    “… •A method to evaluate hydraulic properties using the groundwater level (GL).•Extraction of informative features of GL conditioning with a precipitation pattern …”
    Volltext
    Journal Article
  2. 2

    Deep conditional generative model for personalization of 12-lead electrocardiograms and cardiovascular risk prediction von Sang, Yuling, Banerjee, Abhirup, Beetz, Marcel, Grau, Vicente

    ISSN: 2673-253X, 2673-253X
    Veröffentlicht: Switzerland Frontiers Media S.A 16.04.2025
    Veröffentlicht in Frontiers in digital health (16.04.2025)
    “… We propose a conditional Variational Autoencoder (cVAE) framework to generate realistic, subject-specific 12-lead ECGs …”
    Volltext
    Journal Article
  3. 3

    Generating multiperspective process traces using conditional variational autoencoders von Graziosi, Riccardo, Ronzani, Massimiliano, Buliga, Andrei, Di Francescomarino, Chiara, Folino, Francesco, Ghidini, Chiara, Meneghello, Francesca, Pontieri, Luigi

    ISSN: 2948-2178, 2948-2178
    Veröffentlicht: Cham Springer International Publishing 20.05.2025
    Veröffentlicht in Process Science (20.05.2025)
    “… In recent years, trace generation has emerged as a significant challenge within the Process Mining community. Deep Learning (DL) models have demonstrated …”
    Volltext
    Journal Article
  4. 4

    Framing the Sequence: Genre-Aligned Photo Curation via Shot-Scale Embedding von Park, Youngsup, Lim, Yangmi, Kang, Dongwann

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.09.2025
    Veröffentlicht in Electronics (Basel) (01.09.2025)
    “… ) a conditional variational autoencoder (cVAE) for embedding temporal shot rhythms conditioned on genre, and (3 …”
    Volltext
    Journal Article
  5. 5

    조건부 생성모델을 이용한 강수 패턴에 따른 지하수위 생성 및 이의 활용에 관한 연구 von 정지호(Jiho Jeong), 정진아(Jina Jeong), 이병선(Byung Sun Lee), 송성호(Sung-Ho Song)

    ISSN: 1225-7281, 2288-7962
    Veröffentlicht: Korea Society Of Economic&Environmental Geology 28.02.2021
    Veröffentlicht in 자원환경지질 (28.02.2021)
    “… of the regression model. To solve the above problem, a process for generating the GWL fluctuation pattern for conditioning the precipitation is proposed …”
    Volltext
    Journal Article
  6. 6

    Application of conditional generative model for sonic log estimation considering measurement uncertainty von Jeong, Jina, Park, Eungyu, Emelyanova, Irina, Pervukhina, Marina, Esteban, Lionel, Yun, Seong-Taek

    ISSN: 0920-4105, 1873-4715
    Veröffentlicht: Elsevier B.V 01.01.2021
    Veröffentlicht in Journal of petroleum science & engineering (01.01.2021)
    “… The developed method is based on the conditional variational autoencoder (CVAE) and effectively considers uncertainty associated with the variability of the measured data …”
    Volltext
    Journal Article
  7. 7

    Trust-Act: Integrating Trust in Imitation Learning von Lingg, Nico, Demiris, Yiannis

    ISSN: 1944-9437
    Veröffentlicht: IEEE 25.08.2025
    Veröffentlicht in IEEE RO-MAN (25.08.2025)
    “… In this paper, we present Trust-Act, a framework that integrates trust labels into a conditional variational autoencoder (CVAE …”
    Volltext
    Tagungsbericht
  8. 8

    Fusion U and V: Efficient MRI Sampling via the Fusion of U-net and Conditional Variational Autoencoder von Pershina, Khristina, Huang, Ching Chun

    ISSN: 2575-8284
    Veröffentlicht: IEEE 09.07.2024
    “… Our paper introduces a novel approach, Fusion UandV, which employs a Conditional Variational Autoencoder (cVAE …”
    Volltext
    Tagungsbericht
  9. 9
  10. 10

    Style Conditioned Recommendations von Iqbal, Murium, Aryafar, Kamelia, Anderton, Timothy

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.08.2019
    Veröffentlicht in arXiv.org (05.08.2019)
    “… We use Conditional Variational Autoencoder (CVAE) architecture, where both the encoder and decoder are conditioned on a user profile learned from item content data …”
    Volltext
    Paper
  11. 11

    SurpriseNet: Melody Harmonization Conditioning on User-controlled Surprise Contours von Yi-Wei, Chen, Hung-Shin, Lee, Yen-Hsing, Chen, Wang, Hsin-Min

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.08.2021
    Veröffentlicht in arXiv.org (24.08.2021)
    “… Based on this, we propose a user-controllable framework that uses a conditional variational autoencoder (CVAE …”
    Volltext
    Paper
  12. 12

    Contextually Plausible and Diverse 3D Human Motion Prediction von Aliakbarian, Sadegh, Fatemeh Sadat Saleh, Petersson, Lars, Gould, Stephen, Salzmann, Mathieu

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.12.2020
    Veröffentlicht in arXiv.org (05.12.2020)
    “… In this context, a popular approach consists of using a Conditional Variational Autoencoder (CVAE). However, existing approaches that do so either fail to capture …”
    Volltext
    Paper
  13. 13

    Balancing Exploration and Exploitation: Disentangled \(\beta\)-CVAE in De Novo Drug Design von Guang Jun Nicholas Ang, De Tao Irwin Chin, Shen, Bingquan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.08.2023
    Veröffentlicht in arXiv.org (18.08.2023)
    “… In this respect, deep generative conditional variational autoencoder (CVAE) models are a powerful approach for generating novel molecules with desired drug-like properties …”
    Volltext
    Paper
  14. 14

    Class-Conditioned Variational Autoencoder with Evolutionary Optimization for the Virtual Data Generation Challenge von Tachioka, Yuuki

    ISSN: 2759-2871
    Veröffentlicht: Care XDX Center, Kyushu Institute of Technology 22.05.2025
    “… To address this issue, we propose a novel data augmentation framework using conditional variational autoencoders (CVAE …”
    Volltext
    Journal Article
  15. 15
  16. 16

    Physical discovery in representation learning via conditioning on prior knowledge: applications for ferroelectric domain dynamics von Liu, Yongtao, Huey, Bryan D, Ziatdinov, Maxim A, Kalinin, Sergei V

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.03.2022
    Veröffentlicht in arXiv.org (07.03.2022)
    “… Here, we explore an approach based on conditioning the data on the known (continuous) physical parameters, and systematically compare it with the …”
    Volltext
    Paper
  17. 17

    Learning Conditional Variational Autoencoders with Missing Covariates von Ramchandran, Siddharth, Tikhonov, Gleb, Lönnroth, Otto, Tiikkainen, Pekka, Lähdesmäki, Harri

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.03.2022
    Veröffentlicht in arXiv.org (02.03.2022)
    “… Conditional variational autoencoders (CVAEs) are versatile deep generative models that extend the standard VAE framework by conditioning the generative model with auxiliary covariates …”
    Volltext
    Paper
  18. 18

    Bayesian Forecasting with Deep Generative Disturbance Models in Stochastic MPC for Building Energy Systems von Sorouifar, Farshud, Paulson, Joel A., Wang, Ye, Quirynen, Rien, Laughman, Christopher R., Chakrabarty, Ankush

    ISSN: 2768-0770
    Veröffentlicht: IEEE 21.08.2024
    Veröffentlicht in Control Technology and Applications (Online) (21.08.2024)
    “… Generative models, such as conditional variational autoencoders (CVAEs), provide an expressive and automated approach for learning distributions from data …”
    Volltext
    Tagungsbericht
  19. 19

    Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction von Schmerling, Edward, Leung, Karen, Wolf Vollprecht, Pavone, Marco

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.10.2017
    Veröffentlicht in arXiv.org (25.10.2017)
    “… This paper presents a method for constructing human-robot interaction policies in settings where multimodality, i.e., the possibility of multiple highly …”
    Volltext
    Paper