Suchergebnisse - causal adversarial autoencoder
-
1
Causal Adversarial Autoencoder for Disentangled SAR Image Representation and Few-Shot Target Recognition
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 01.01.2023Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.01.2023)“… A Causal Adversarial auto-Encoder (CAE) for SAR-ATR is then proposed to embody this disentangled representation, which incorporates a number of novel built-in network features …”
Volltext
Journal Article -
2
Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.02.2025Veröffentlicht in IEEE transaction on neural networks and learning systems (01.02.2025)“… ) and causal representation learning (CRL) in a dual-generative adversarial network (Dual-GAN) architecture, aiming to enhance the robust OOD generalization in modern machine learning …”
Volltext
Journal Article -
3
De-Occlusion Face Model based on Deep Occlusor Segmentation and Deep Inpainting Models
ISSN: 1548-0992, 1548-0992Veröffentlicht: Los Alamitos IEEE 01.08.2025Veröffentlicht in Revista IEEE América Latina (01.08.2025)“… and generative adversarial networks, fundamental challenges persist, such as the causal interpretation of information loss …”
Volltext
Journal Article -
4
Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region
ISSN: 1874-8961, 1874-8953Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025Veröffentlicht in Mathematical geosciences (01.01.2025)“… This study investigated the application of a causal discovery algorithm and deep learning models to identify geochemical anomaly patterns associated with mineralization …”
Volltext
Journal Article -
5
DAG-AVAE: Combining GAN with Adversarial VAE to Enhance Causal Structure Learning
Veröffentlicht: IEEE 08.11.2024Veröffentlicht in 2024 5th International Conference on Artificial Intelligence and Computer Engineering (ICAICE) (08.11.2024)“… The task of uncovering the causal structure underlying observed data has garnered significant interest and posed considerable challenges in recent years …”
Volltext
Tagungsbericht -
6
Counterfactual AI in Healthcare: Enhancing Decision-Making and Outcome Prediction
Veröffentlicht: IEEE 11.04.2025Veröffentlicht in 2025 Seventh International Conference on Computational Intelligence andCommunication Technologies (CCICT) (11.04.2025)“… ), Variational Autoencoders (VAEs), and Structural Causal Models (SCMs), to estimate treatment effects accurately …”
Volltext
Tagungsbericht -
7
DR-VIDAL - Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data
ISSN: 1942-597X, 1559-4076Veröffentlicht: United States 2022Veröffentlicht in AMIA ... Annual Symposium proceedings (2022)“… DR-VIDAL integrates: (i) a variational autoencoder (VAE) to factorize confounders into latent variables according to causal assumptions; (ii …”
Weitere Angaben
Journal Article -
8
Accounting for dependencies among performance shaping factors in SPAR-H using a regularized autoencoder and WINGS-AISM
ISSN: 1738-5733, 2234-358XVeröffentlicht: Elsevier B.V 01.01.2025Veröffentlicht in Nuclear engineering and technology (01.01.2025)“… The proposed method comprises three primary aspects: 1) a regularized autoencoder for the denoising and feature extraction of expert evaluation results, 2 …”
Volltext
Journal Article -
9
Accounting for dependencies among performance shaping factors in SPAR-H using a regularized autoencoder and WINGS-AISM
ISSN: 1738-5733, 2234-358XVeröffentlicht: 2025Veröffentlicht in Nuclear engineering and technology (2025)“… The proposed method comprises three primary aspects: 1) a regularized autoencoder for the denoising and feature extraction of expert evaluation results, 2 …”
Volltext
Journal Article -
10
Counterfactual Inference for Generalized Zero-Shot Compound-Fault Diagnosis
ISSN: 0018-9456, 1557-9662Veröffentlicht: New York IEEE 2025Veröffentlicht in IEEE transactions on instrumentation and measurement (2025)“… This a typically true for fault diagnosis in machinery, particularly for compound faults. The counterfactual inference reveals the causal components inherent in the fault data …”
Volltext
Journal Article -
11
A WGAN-based Missing Data Causal Discovery Method
Veröffentlicht: IEEE 25.08.2023Veröffentlicht in 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) (25.08.2023)“… The state-of-the-art causal discovery algorithms are typically based on complete observed data …”
Volltext
Tagungsbericht -
12
Fairness without the sensitive attribute via Causal Variational Autoencoder
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.09.2021Veröffentlicht in arXiv.org (10.09.2021)“… Based on a causal graph, we rely on a new variational auto-encoding based framework named SRCVAE to infer a sensitive information …”
Volltext
Paper -
13
Using Causality-Driven Graph Representation Learning for APT Attacks Path Identification
ISSN: 2073-8994, 2073-8994Veröffentlicht: Basel MDPI AG 01.09.2025Veröffentlicht in Symmetry (Basel) (01.09.2025)“… In the cybersecurity attack and defense space, the “attacker” and the “defender” form a dynamic and symmetrical adversarial pair …”
Volltext
Journal Article -
14
Algorithmic Recourse in Sequential Decision-Making for Long-Term Fairness
ISBN: 9798293886449Veröffentlicht: ProQuest Dissertations & Theses 01.01.2025“… Algorithmic decision-making systems are increasingly being deployed in high-stakes domains such as criminal justice, education, and financial services. While …”
Volltext
Dissertation -
15
Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization
ISSN: 2162-237X, 2162-2388Veröffentlicht: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2024Veröffentlicht in IEEE Transactions on Neural Networks and Learning Systems (01.01.2024)Volltext
Journal Article -
16
A transformer guided multi modal learning framework for predictive and causal assessment of thermal runaway in high energy batteries
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 23.10.2025Veröffentlicht in Scientific reports (23.10.2025)“… ) FUSE-GEN, adversarial trained dual-encoder variational autoencoder, fusing acoustic emission (AE …”
Volltext
Journal Article -
17
DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.05.2023Veröffentlicht in arXiv.org (07.05.2023)“… DR-VIDAL integrates: (i) a variational autoencoder (VAE) to factorize confounders into latent variables according to causal assumptions; (ii …”
Volltext
Paper -
18
Constraint-Driven Causal Representation Learning for Vigilance Robust Estimation in Brain-Computer Interface
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 2025Veröffentlicht in IEEE transaction on neural networks and learning systems (2025)“… , out-of-distribution (OOD) scenarios. The core idea of this study is to learn constraints that capture causal information from the input based on the assumed underlying data generating process …”
Volltext
Journal Article -
19
A Novel Causal Federated Transfer Learning Method for Power Transformer Fault Diagnosis Based on Voiceprint Recognition
ISSN: 1530-437X, 1558-1748Veröffentlicht: New York IEEE 15.09.2025Veröffentlicht in IEEE sensors journal (15.09.2025)“… First, a causal FTL framework is proposed by integrating a causal graph autoencoder into FTL to capture nonlinear causal features between voiceprint features and faults …”
Volltext
Journal Article -
20
Integrating causal representations with domain adaptation for fault diagnosis
ISSN: 0951-8320Veröffentlicht: Elsevier Ltd 01.08.2025Veröffentlicht in Reliability engineering & system safety (01.08.2025)“… In this paper, a Cross-domain Fault Diagnosis model based on Causal Representation learning (CFDCR) is proposed. This method employs causal representation learning …”
Volltext
Journal Article

