Suchergebnisse - autoencoder-based abnormal activity detection

  • Treffer 1 - 16 von 16
Treffer weiter einschränken
  1. 1

    Autoencoder-based abnormal activity detection using parallelepiped spatio-temporal region von George, Michael, Jose, Babita Roslind, Mathew, Jimson, Kokare, Pranjali

    ISSN: 1751-9632, 1751-9640, 1751-9640
    Veröffentlicht: The Institution of Engineering and Technology 01.02.2019
    Veröffentlicht in IET computer vision (01.02.2019)
    “… A manual monitoring system is near impossible due to the large man-hour requirements. Recently, automatic abnormal activity detection has been an area of interest among researchers …”
    Volltext
    Journal Article
  2. 2

    Autoencoderbased unsupervised one‐class learning for abnormal activity detection in egocentric videos von Hu, Haowen, Hachiuma, Ryo, Saito, Hideo

    ISSN: 1751-9632, 1751-9640
    Veröffentlicht: 01.01.2025
    Veröffentlicht in IET computer vision (01.01.2025)
    “… In recent years, abnormal human activity detection has become an important research topic …”
    Volltext
    Journal Article
  3. 3

    Computer Vision with Optimal Deep Stacked Autoencoder-based Fall Activity Recognition for Disabled Persons in the IoT Environment von Alabdulkreem, Eatedal, Marzouk, Radwa, Alduhayyem, Mesfer, Al-Hagery, Mohammed Abdullah, Motwakel, Abdelwahed, Hamza, Manar Ahmed

    ISSN: 1658-9912, 2676-2633
    Veröffentlicht: King Salman Center for Disability Research 26.10.2023
    Veröffentlicht in Journal of Disability Research (26.10.2023)
    “… Artificial intelligence and Internet of Things (IoT) techniques that include deep learning and machine learning methods are now implemented in the field of medicine for automating the detection process of diseased and abnormal cases …”
    Volltext
    Journal Article
  4. 4

    Autoencoder-Based iEEG Signal Classification for Accurate Focal and Non-focal Epilepsy Detection von Jangde, Anjali Sagar, Anuragi, Arti, Sisodia, Dilip Singh

    Veröffentlicht: IEEE 06.07.2023
    “… Intracranial Electroencephalography (iEEG) signals capture abnormal brain neuronal activity and are widely employed in epilepsy diagnoses …”
    Volltext
    Tagungsbericht
  5. 5

    Ambient Sensor-based Abnormal Human Activity Detection Using Autoencoder von Kherrour, Kelthoum, Titouna, Faiza, Laskri, Mohamed Tayeb

    Veröffentlicht: IEEE 23.04.2025
    “… Among the challenges related to human activity recognition systems that are deployed in ambient assisted living environments, is the ability to identify abnormal behavior patterns …”
    Volltext
    Tagungsbericht
  6. 6

    Abnormal activity detection using shear transformed spatio-temporal regions at the surveillance network edge von George, Michael, Jose, Babita Roslind, Mathew, Jimson

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.10.2020
    Veröffentlicht in Multimedia tools and applications (01.10.2020)
    “… To detect abnormal activity, an autoencoder based method is adopted considering the requirement for running the method at the network edge …”
    Volltext
    Journal Article
  7. 7

    Hybrid Attention and Motion Constraint for Anomaly Detection in Crowded Scenes von Zhang, Xinfeng, Fang, Jinpeng, Yang, Baoqing, Chen, Shuhan, Li, Bin

    ISSN: 1051-8215, 1558-2205
    Veröffentlicht: New York IEEE 01.05.2023
    “… Since the abnormal cases are rare, variable and unpredictable, autoencoders with encoder and decoder structures using only normal samples have become a hot topic among various approaches for anomaly detection …”
    Volltext
    Journal Article
  8. 8

    A Spatio‐Temporal Enhanced Graph‐Transformer AutoEncoder embedded pose for anomaly detection von Zhu, Honglei, Wei, Pengjuan, Xu, Zhigang

    ISSN: 1751-9632, 1751-9640
    Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.04.2024
    Veröffentlicht in IET computer vision (01.04.2024)
    “… ‐temporal dependencies of non‐Euclidean data such as human skeleton graphs, and the autoencoder based on this basic unit is widely used to model sequence features …”
    Volltext
    Journal Article
  9. 9

    V2AnomalyVec: Deep Discriminative Embeddings for Detecting Anomalous Activities in Surveillance Videos von Chandrakala, S., Vignesh, L. K. P.

    ISSN: 2329-924X, 2373-7476
    Veröffentlicht: Piscataway IEEE 01.10.2022
    Veröffentlicht in IEEE transactions on computational social systems (01.10.2022)
    “… existing among normal and abnormal event classes. In the case of autoencoder-based normality model trained using segments of normal events only, there may …”
    Volltext
    Journal Article
  10. 10

    Time-Window Group-Correlation Support vs. Individual Features: A Detection of Abnormal Users von Lun-Pin Yuan, Choo, Euijin, Yu, Ting, Issa Khalil, Zhu, Sencun

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.12.2020
    Veröffentlicht in arXiv.org (27.12.2020)
    “… Autoencoder-based anomaly detection methods have been used in identifying anomalous users from large-scale enterprise logs with the assumption that adversarial activities do not follow past habitual patterns …”
    Volltext
    Paper
  11. 11

    Anomaly Detection Approaches for Stock Price Manipulation Detection von Rizvi, Baqar Abbas

    ISBN: 9798352655702
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… It is evident from the literature that most existing research focused on detecting a specific manipulation scheme using supervised learning but lacks the adaptive capability to capture different manipulative strategies …”
    Volltext
    Dissertation
  12. 12

    Towards Designing Accurate Detection Methods for Emerging Cyber Threats von Yuan, Lun Pin

    ISBN: 9798460447145
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… ) detection for zero-day malware before day zero, and (2) detection for habitual anomalies, assuming adversarial activities violate habitual …”
    Volltext
    Dissertation
  13. 13

    Human Activity Recognition based on Stacked Autoencoder with Complex Background Conditions von Das, Aparajita, Saikia, Navajit, Rajbongshi, Subhash Ch, Sarma, Kandarpa Kumar

    Veröffentlicht: IEEE 01.12.2022
    “… Human activity recognition is one of the prime focus areas of computer vision having a range of current and evolving applications in the real-world environment such as abnormal activity recognition …”
    Volltext
    Tagungsbericht
  14. 14

    Anomaly Detection Using Predictive Convolutional Long Short-Term Memory Units von Medel, Jefferson Ryan

    ISBN: 9781369443943, 1369443943
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2016
    “… The first is an encoder decoder based model that learns spatio-temporal features from stacked non-overlapping image patches, and the second is an autoencoder based model that utilizes max-pooling …”
    Volltext
    Dissertation
  15. 15

    Generation and Evaluation of Designs Using Deep Neural Networks von Dering, Matthew L

    ISBN: 0438134680, 9780438134683
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2018
    “… The objective of this dissertation is to reduce inefficiencies and manual tasks that are part of the product design lifecycle, using proposed deep neural …”
    Volltext
    Dissertation
  16. 16

    Detecting human abnormal behaviour through a video generated model von Gatt, Thomas, Seychell, Dylan, Dingli, Alexiei

    ISSN: 1849-2266
    Veröffentlicht: IEEE 01.09.2019
    “… Detecting human abnormal activities is the process of observing rare events that deviate from normality …”
    Volltext
    Tagungsbericht