Suchergebnisse - asymmetric denoising autoencoder

  • Treffer 1 - 17 von 17
Treffer weiter einschränken
  1. 1

    Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder von Jiang, Ling, Gu, Juping, Zhang, Xinsong, Hua, Liang, Cai, Yueming

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 08.12.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (08.12.2023)
    “… This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE …”
    Volltext
    Journal Article
  2. 2

    Two-stage noise aware training using asymmetric deep denoising autoencoder von Lee, Kang Hyun, Kang, Shin Jae, Kang, Woo Hyun, Kim, Nam Soo

    ISSN: 2379-190X
    Veröffentlicht: IEEE 01.03.2016
    “… Ever since the deep neural network (DNN)-based acoustic model appeared, the recognition performance of automatic speech recognition has been greatly improved …”
    Volltext
    Tagungsbericht Journal Article
  3. 3

    A channel estimation method using denoising autoencoder for large-scale asymmetric backscatter systems von Jung, Chae Yoon, Kang, Jae-Mo, Kim, Dong In

    ISSN: 2405-9595, 2405-9595
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in ICT express (01.04.2024)
    “… In order to obtain channel data, we design denoising autoencoder which consists of encoder with Feedforward Neural Network (FNN …”
    Volltext
    Journal Article
  4. 4

    Semi-Supervised Text Simplification with Back-Translation and Asymmetric Denoising Autoencoders von Zhao, Yanbin, Chen, Lu, Chen, Zhi, Yu, Kai

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.04.2020
    Veröffentlicht in arXiv.org (30.04.2020)
    “… ), including denoising autoencoders for language modeling and automatic generation of parallel data by iterative back-translation …”
    Volltext
    Paper
  5. 5

    Query-by-example surgical activity detection von Gao, Yixin, Vedula, S. Swaroop, Lee, Gyusung I., Lee, Mija R., Khudanpur, Sanjeev, Hager, Gregory D.

    ISSN: 1861-6410, 1861-6429
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
    “… Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  6. 6

    Asymmetric Autoencoders: An NN alternative for resource-constrained devices in IoT networks von Gilbert, Mateus S., de Campos, Marcello L.R., Campista, Miguel Elias M.

    ISSN: 1570-8705, 1570-8713
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in Ad hoc networks (01.04.2024)
    “… Many solutions using Neural Networks (NNs) have emerged to address both issues, resorting to autoencoders to extract these redundancies to reduce data transmissions in IoT networks and to remove noise from data in general …”
    Volltext
    Journal Article
  7. 7

    Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms von Kensert, Alexander, Collaerts, Gilles, Efthymiadis, Kyriakos, Van Broeck, Peter, Desmet, Gert, Cabooter, Deirdre

    ISSN: 0021-9673, 1873-3778, 1873-3778
    Veröffentlicht: Netherlands Elsevier B.V 07.06.2021
    Veröffentlicht in Journal of Chromatography A (07.06.2021)
    “… •Autoencoder (AEC) for the simultaneous removal of baseline noise and baseline drift …”
    Volltext
    Journal Article
  8. 8

    Efficient Bearing Sensor Data Compression via an Asymmetrical Autoencoder with a Lifting Wavelet Transform Layer von Zhu, Xin, Cetin, Ahmet Enis

    ISSN: 2158-1525
    Veröffentlicht: IEEE 25.05.2025
    “… In this paper, a novel asymmetrical autoencoder with a lifting wavelet transform (LWT) layer is developed to compress bearing sensor data …”
    Volltext
    Tagungsbericht
  9. 9

    Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation von Grönroos, Stig-Arne, Virpioja, Sami, Kurimo, Mikko

    ISSN: 0922-6567, 1573-0573
    Veröffentlicht: Dordrecht Springer Netherlands 01.12.2020
    Veröffentlicht in Machine translation (01.12.2020)
    “… We review these approaches in the context of an asymmetric-resource one-to-many translation task, in which the pair of target languages are related, with one being a very low-resource and the other …”
    Volltext
    Journal Article
  10. 10

    DEMAE: Diffusion-Enhanced Masked Autoencoder for Hyperspectral Image Classification With Few Labeled Samples von Li, Ziyu, Xue, Zhaohui, Jia, Mingming, Nie, Xiangyu, Wu, Hao, Zhang, Mengxue, Su, Hongjun

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2024
    “… Masked autoencoder (MAE), which is based on Transformer architecture, employs a "mask-reconstruction" strategy for training, allowing the model to be effective for downstream tasks …”
    Volltext
    Journal Article
  11. 11

    DMAE-EEG: A Pretraining Framework for EEG Spatiotemporal Representation Learning von Zhang, Yifan, Yu, Yang, Li, Hao, Wu, Anqi, Chen, Xin, Liu, Jinfang, Zeng, Ling-Li, Hu, Dewen

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.10.2025
    “… To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining generalizable spatiotemporal representation from massive unlabeled EEG …”
    Volltext
    Journal Article
  12. 12

    MAID: Model Attribution via Inverse Diffusion von Zhu, Luyu, Ye, Kai, Yao, Jiayu, Li, Chenxi, Zhao, Luwen, Cao, Yuxin, Wang, Derui, Hao, Jie

    ISSN: 2379-190X
    Veröffentlicht: IEEE 06.04.2025
    “… By employing the inverse diffusion process, we are able to utilize pre-trained Diffusion Models as Denoising Autoencoders, mapping images into a latent space and extracting …”
    Volltext
    Tagungsbericht
  13. 13

    Asymmetric Adaptation of Deep Features for Cross-Domain Classification in Remote Sensing Imagery von Ammour, Nassim, Bashmal, Laila, Bazi, Yakoub, Al Rahhal, M. M., Zuair, Mansour

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 01.04.2018
    Veröffentlicht in IEEE geoscience and remote sensing letters (01.04.2018)
    “… Before the adaptation process, we feed the features obtained from a pretrained convolutional neural network to a denoising autoencoder (DAE …”
    Volltext
    Journal Article
  14. 14

    Feature Learning for Multispectral Satellite Imagery Classification using Neural Architecture Search von Campbell, Roberto, Coltin, Brian, Furlong, P Michael, McMichael, Scott

    Veröffentlicht: Washington American Geophysical Union 12.12.2019
    Veröffentlicht in Earth and Space Science Open Archive ESSOAr (12.12.2019)
    “… Automated classification of remote sensing data is an integral tool for earth scientists, and deep learning has proven very successful at solving such …”
    Volltext
    Paper
  15. 15

    Principal Component Wavelet Networks for Solving Linear Inverse Problems von Tiddeman, Bernard, Ghahremani, Morteza

    ISSN: 2073-8994, 2073-8994
    Veröffentlicht: Basel MDPI AG 01.06.2021
    Veröffentlicht in Symmetry (Basel) (01.06.2021)
    “… —these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed …”
    Volltext
    Journal Article
  16. 16

    Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation von Stig-Arne Grönroos, Virpioja, Sami, Kurimo, Mikko

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.12.2020
    Veröffentlicht in arXiv.org (09.12.2020)
    “… We review these approaches in the context of an asymmetric-resource one-to-many translation task, in which the pair of target languages are related, with one being a very low-resource and the other …”
    Volltext
    Paper
  17. 17

    Diffusion-Driven Domain Adaptation for Generating 3D Molecules von Hong, Haokai, Lin, Wanyu, Kay Chen Tan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.04.2024
    Veröffentlicht in arXiv.org (01.04.2024)
    “… As the domain shift is typically caused by the structure variations of molecules, e.g., scaffold variations, we leverage a designated equivariant masked autoencoder (MAE …”
    Volltext
    Paper