Suchergebnisse - algorithm explainability

  1. 1

    S-SIRUS: an explainability algorithm for spatial regression Random Forest: S-SIRUS: an explainability algorithm von Patelli, Luca, Golini, Natalia, Ignaccolo, Rosaria, Cameletti, Michela

    ISSN: 0960-3174, 1573-1375
    Veröffentlicht: New York Springer US 04.07.2025
    Veröffentlicht in Statistics and computing (04.07.2025)
    “… Random Forest (RF) is a widely used machine learning algorithm known for its flexibility, user-friendliness, and high predictive performance across various domains …”
    Volltext
    Journal Article
  2. 2

    Parallel approaches for a decision tree-based explainability algorithm von Loreti, Daniela, Visani, Giorgio

    ISSN: 0167-739X
    Veröffentlicht: Elsevier B.V 01.09.2024
    Veröffentlicht in Future generation computer systems (01.09.2024)
    “… The explainability research field is precisely devoted to investigating techniques able to give an interpretation of ML algorithms’ predictions …”
    Volltext
    Journal Article
  3. 3

    S-SIRUS: an explainability algorithm for spatial regression Random Forest von Patelli, Luca, Golini, Natalia, Ignaccolo, Rosaria, Cameletti, Michela

    ISSN: 0960-3174, 1573-1375
    Veröffentlicht: Dordrecht Springer Nature B.V 01.10.2025
    Veröffentlicht in Statistics and computing (01.10.2025)
    “… Random Forest (RF) is a widely used machine learning algorithm known for its flexibility, user-friendliness, and high predictive performance across various domains …”
    Volltext
    Journal Article
  4. 4

    Clinical Explainability Failure (CEF) & Explainability Failure Ratio (EFR) – Changing the Way We Validate Classification Algorithms von Venugopal, Vasantha Kumar, Takhar, Rohit, Gupta, Salil, Mahajan, Vidur

    ISSN: 0148-5598, 1573-689X, 1573-689X
    Veröffentlicht: New York Springer US 01.04.2022
    Veröffentlicht in Journal of medical systems (01.04.2022)
    “… Adoption of Artificial Intelligence (AI) algorithms into the clinical realm will depend on their inherent trustworthiness, which is built not only by robust validation studies but is also deeply linked to the explainability …”
    Volltext
    Journal Article
  5. 5

    Predicting the Next-Day Perceived and Physiological Stress of Pregnant Women by Using Machine Learning and Explainability: Algorithm Development and Validation von Ng, Ada, Wei, Boyang, Jain, Jayalakshmi, Ward, Erin A, Tandon, S Darius, Moskowitz, Judith T, Krogh-Jespersen, Sheila, Wakschlag, Lauren S, Alshurafa, Nabil

    ISSN: 2291-5222, 2291-5222
    Veröffentlicht: Toronto JMIR Publications 01.08.2022
    Veröffentlicht in JMIR mHealth and uHealth (01.08.2022)
    “… Background: Cognitive behavioral therapy–based interventions are effective in reducing prenatal stress, which can have severe adverse health effects on mothers …”
    Volltext
    Journal Article
  6. 6

    Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability von Herm, Lukas-Valentin, Heinrich, Kai, Wanner, Jonas, Janiesch, Christian

    ISSN: 0268-4012, 1873-4707
    Veröffentlicht: Elsevier Ltd 01.04.2023
    Veröffentlicht in International journal of information management (01.04.2023)
    “… Machine learning models with higher performance are often based on more complex algorithms and therefore lack explainability and vice versa …”
    Volltext
    Journal Article
  7. 7

    Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test von Lenatti, Marta, Moreno-Sánchez, Pedro A, Polo, Edoardo M, Mollura, Maximiliano, Barbieri, Riccardo, Paglialonga, Alessia

    ISSN: 1558-9137, 1558-9137
    Veröffentlicht: 15.09.2022
    Veröffentlicht in American journal of audiology (15.09.2022)
    “… ) models applied to a speech-in-noise hearing screening test and investigate the contribution of the measured features toward hearing loss detection using explainability …”
    Weitere Angaben
    Journal Article
  8. 8

    An algorithm to optimize explainability using feature ensembles von Lazebnik, Teddy, Bunimovich-Mendrazitsky, Svetlana, Rosenfeld, Avi

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.01.2024
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.01.2024)
    “… However, current feature ensemble algorithms do not consider explainability as a key factor in their construction …”
    Volltext
    Journal Article
  9. 9

    Enhanced Model for Gestational Diabetes Mellitus Prediction Using a Fusion Technique of Multiple Algorithms with Explainability von Hassan, Ahmad, Ahmad, Saima Gulzar, Iqbal, Tassawar, Munir, Ehsan Ullah, Ayyub, Kashif, Ramzan, Naeem

    ISSN: 1875-6883, 1875-6883
    Veröffentlicht: Dordrecht Springer Netherlands 04.03.2025
    “… It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques …”
    Volltext
    Journal Article
  10. 10

    Imbalanced rock burst assessment using variational autoencoder-enhanced gradient boosting algorithms and explainability von Lin, Shan, Liang, Zenglong, Dong, Miao, Guo, Hongwei, Zheng, Hong

    ISSN: 2467-9674, 2096-2754, 2467-9674
    Veröffentlicht: Shanghai Elsevier B.V 01.08.2024
    Veröffentlicht in Underground space (Beijing) (01.08.2024)
    “… We conducted a study to evaluate the potential and robustness of gradient boosting algorithms in rock burst assessment, established a variational autoencoder (VAE …”
    Volltext
    Journal Article
  11. 11

    Explainability-based Trust Algorithm for electricity price forecasting models von Heistrene, Leena, Machlev, Ram, Perl, Michael, Belikov, Juri, Baimel, Dmitry, Levy, Kfir, Mannor, Shie, Levron, Yoash

    ISSN: 2666-5468, 2666-5468
    Veröffentlicht: Elsevier Ltd 01.10.2023
    Veröffentlicht in Energy and AI (01.10.2023)
    “… Advanced machine learning (ML) algorithms have outperformed traditional approaches in various forecasting applications, especially electricity price forecasting (EPF …”
    Volltext
    Journal Article
  12. 12

    STD-Explain: Generalizing explanations for spatio-temporal graph convolutional networks based on spatio-temporal decoupled perturbation von Li, Yanshan, Shi, Ting, He, Suixuan, Chen, Zhiyuan, Zhang, Li, Yu, Rui, Xie, Weixin

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 07.12.2025
    Veröffentlicht in Neurocomputing (Amsterdam) (07.12.2025)
    “… of spatio-temporal data, posing challenges for existing explainability algorithms to effectively separate and interpret these intertwined features …”
    Volltext
    Journal Article
  13. 13

    Deep Neural Networks Explainability: Algorithms and Applications von Du, Mengnan

    ISBN: 9798438745204
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… Consider, for instance, an advanced self-driving car equipped with various DNN algorithms doesn't brake or decelerate when confronting a stopped firetruck …”
    Volltext
    Dissertation
  14. 14

    Kurz erklärt: Measuring Data Changes in Data Engineering and their Impact on Explainability and Algorithm Fairness von Klettke, Meike, Lutsch, Adrian, Störl, Uta

    ISSN: 1618-2162, 1610-1995
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
    “… In machine learning processes requirements such as fairness and explainability are essential …”
    Volltext
    Journal Article
  15. 15

    Decoding student cognitive abilities: a comparative study of explainable AI algorithms in educational data mining von Niu, Tianyue, Liu, Ting, Luo, Yiming Taclis, Pang, Patrick Cheong-Iao, Huang, Shuaishuai, Xiang, Ao

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 24.07.2025
    Veröffentlicht in Scientific reports (24.07.2025)
    “… This study employs data-driven artificial intelligence (AI) models supported by explainability algorithms and PSM causal inference to investigate the factors influencing students …”
    Volltext
    Journal Article
  16. 16

    Explainability: Relevance based dynamic deep learning algorithm for fault detection and diagnosis in chemical processes von Agarwal, Piyush, Tamer, Melih, Budman, Hector

    ISSN: 0098-1354, 1873-4375
    Veröffentlicht: Elsevier Ltd 01.11.2021
    Veröffentlicht in Computers & chemical engineering (01.11.2021)
    “… •An Explainability based methodology is employed for deriving contribution plots for fault diagnosis …”
    Volltext
    Journal Article
  17. 17

    Predicting financial crises: an evaluation of machine learning algorithms and model explainability for early warning systems von Reimann, Chris

    ISSN: 2662-6136, 2662-6144
    Veröffentlicht: Cham Springer International Publishing 01.06.2024
    Veröffentlicht in Review of evolutionary political economy (Online) (01.06.2024)
    “… This paper addresses the critical challenge of detecting financial crises in their early stages given their profound economic and societal consequences. It …”
    Volltext
    Journal Article
  18. 18

    Explainability in RIONA Algorithm Combining Rule Induction and Instance-Based Learning von Gora, Grzegorz, Skowron, Andrzej, Wojna, Arkadiusz

    ISSN: 2300-5963
    Veröffentlicht: Polish Information Processing Society 2023
    “… The article concerns the well-known RIONA algorithm. We focus on the explainability property of this algorithm …”
    Volltext
    Tagungsbericht Journal Article
  19. 19

    Risk Stratification for Herpes Simplex Virus Pneumonia Using Elastic Net Penalized Cox Proportional Hazard Algorithm with Enhanced Explainability von Wang, Yu-Chiang, Lin, Wan-Ying, Tseng, Yi-Ju, Fu, Yiwen, Li, Weijia, Huang, Yu-Chen, Wang, Hsin-Yao

    ISSN: 2077-0383, 2077-0383
    Veröffentlicht: Switzerland MDPI AG 05.07.2023
    Veröffentlicht in Journal of clinical medicine (05.07.2023)
    “… In this study, we developed and validated a risk stratification model for HSV bronchopneumonia using an elastic net penalized Cox proportional hazard algorithm …”
    Volltext
    Journal Article
  20. 20

    Explainability in deep reinforcement learning von Heuillet, Alexandre, Couthouis, Fabien, Díaz-Rodríguez, Natalia

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 28.02.2021
    Veröffentlicht in Knowledge-based systems (28.02.2021)
    “… ), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms …”
    Volltext
    Journal Article