Suchergebnisse - We propose a multi-layer variational autoencoder method

  1. 1

    Hierarchical Residual Learning Based Vector Quantized Variational Autoencoder for Image Reconstruction and Generation von Adiban, Mohammad, Stefanov, Kalin, Sabato Marco Siniscalchi, Salvi, Giampiero

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.08.2022
    Veröffentlicht in arXiv.org (09.08.2022)
    “… We propose a multi-layer variational autoencoder method, we call HR-VQVAE, that learns hierarchical discrete representations of the data …”
    Volltext
    Paper
  2. 2

    Drug repositioning based on heterogeneous networks and variational graph autoencoders von Lei, Song, Lei, Xiujuan, Liu, Lian

    ISSN: 1663-9812, 1663-9812
    Veröffentlicht: Switzerland Frontiers Media S.A 21.12.2022
    Veröffentlicht in Frontiers in pharmacology (21.12.2022)
    “…  years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder …”
    Volltext
    Journal Article
  3. 3

    Nonlinear system identification using modified variational autoencoders von Paniagua, Jose L., López, Jesús A.

    ISSN: 2667-3053, 2667-3053
    Veröffentlicht: Elsevier Ltd 01.06.2024
    Veröffentlicht in Intelligent systems with applications (01.06.2024)
    “… Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX …”
    Volltext
    Journal Article
  4. 4
  5. 5

    Data augmentation with norm-AE and selective pseudo-labelling for unsupervised domain adaptation von Wang, Qian, Meng, Fanlin, Breckon, Toby P.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.04.2023
    Veröffentlicht in Neural networks (01.04.2023)
    “… , a shallow Multi-Layer Perceptron) trained in the original feature space. Besides, we propose a novel generative model norm …”
    Volltext
    Journal Article
  6. 6

    Deep Learning Approach for Epileptic Focus Localization von Daoud, Hisham, Bayoumi, Magdy

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Veröffentlicht: United States IEEE 01.04.2020
    “… Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier …”
    Volltext
    Journal Article
  7. 7

    The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless Fingerprinting von Teng-Hui, Huang, Dahanayaka, Thilini, Thilakarathna, Kanchana, Leong, Philip H W, Hesham El Gamal

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.08.2023
    Veröffentlicht in arXiv.org (29.08.2023)
    “… , packet length, without decryption of the payload. Inspired by these results, we propose a multi-layer fingerprinting framework that jointly considers the multi-layer signatures for improved identification performance …”
    Volltext
    Paper
  8. 8

    Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning von Wang, Bo, Wu, Peilong, Du, Xiaoxin, Zhang, Chunyu, Fu, Shanshan, Sun, Tang, Yang, Xue

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.12.2025
    Veröffentlicht in Computational biology and chemistry (01.12.2025)
    “… ), variational autoencoders (VAEs), and dynamic kernel matrix weighting for microbe-disease association (MDA) prediction …”
    Volltext
    Journal Article
  9. 9

    Deep Learning for Identifying Promising Drug Candidates in Drug–Phospholipid Complexes von Yoo, Soyoung, Lee, Hanbyul, Kim, Junghyun

    ISSN: 1420-3049, 1420-3049
    Veröffentlicht: Switzerland MDPI AG 16.06.2023
    Veröffentlicht in Molecules (Basel, Switzerland) (16.06.2023)
    “… Drug–phospholipid complexing is a promising formulation technology for improving the low bioavailability of active pharmaceutical ingredients (APIs). However, …”
    Volltext
    Journal Article
  10. 10

    SVAE‐GRU‐based degradation generation and prediction for small samples von Shangguan, Anqi, Feng, Nan, Mu, Lingxia, Fei, Rong, Hei, Xinhong, Xie, Guo

    ISSN: 0748-8017, 1099-1638
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.11.2023
    Veröffentlicht in Quality and reliability engineering international (01.11.2023)
    “… New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE …”
    Volltext
    Journal Article
  11. 11

    Remaining Useful Life Prediction Method Based on Conv-Transformer Variational Autoencoder von Wang, Junjie, Hu, Xiaofeng, Yang, Yuwang

    Veröffentlicht: IEEE 14.06.2024
    “… To address these, this paper proposes a new RUL prediction method based on Conv-Transformer Variational Autoencoder …”
    Volltext
    Tagungsbericht
  12. 12

    Soft Sensor Development Based on Deep Extended Variational Autoencoder with Just-in-time Learning von Shengjie, Xiong, Li, Xie, Liang, Xu

    ISSN: 2767-9861
    Veröffentlicht: IEEE 09.05.2025
    “… To address this issue, this paper proposes a soft sensor development method based on a deep extended variational autoencoder with just-in-Time Learning (JITL-DE-VAE …”
    Volltext
    Tagungsbericht
  13. 13

    Quantum deep learning-enhanced ethereum blockchain for cloud security: intrusion detection, fraud prevention, and secure data migration von Nagarjun, A. Venkata, Rajkumar, Sujatha

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 05.11.2025
    Veröffentlicht in Scientific reports (05.11.2025)
    “… Conventional blockchain security methods suffer from poor scalability and dynamic threat analysis …”
    Volltext
    Journal Article
  14. 14

    Securing Multi-Layer Federated Learning: Detecting and Mitigating Adversarial Attacks von Gouge, Justin, Wang, Ping

    Veröffentlicht: IEEE 07.08.2024
    “… In this work, we propose new methods for anomaly detection and removal of attackers from training in a multi-layer FL system …”
    Volltext
    Tagungsbericht
  15. 15

    Simple and Effective Graph Autoencoders with One-Hop Linear Models von Salha, Guillaume, Hennequin, Romain, Vazirgiannis, Michalis

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.06.2020
    Veröffentlicht in arXiv.org (17.06.2020)
    “… Over the last few years, graph autoencoders (AE) and variational autoencoders (VAE) emerged as powerful node embedding methods, with promising performances on challenging tasks such as link prediction and node clustering …”
    Volltext
    Paper
  16. 16

    Diverse Preference Augmentation with Multiple Domains for Cold-start Recommendations von Zhang, Yan, Li, Changyu, Tsang, Ivor W., Xu, Hui, Duan, Lixin, Yin, Hongzhi, Li, Wen, Shao, Jie

    ISSN: 2375-026X
    Veröffentlicht: IEEE 01.05.2022
    Veröffentlicht in Data engineering (01.05.2022)
    “… Cold-start issues have been more and more challenging for providing accurate recommendations with the fast increase of users and items. Most existing …”
    Volltext
    Tagungsbericht
  17. 17

    A Zero-Shot Learning-Based Detection Model Against Zero-Day Attacks in IoT von Gao, Xueqin, Chen, Kai, Zhao, Yufei, Zhang, Peng, Han, Longxi, Zhang, Daojuan

    Veröffentlicht: IEEE 17.05.2024
    “… Aiming at the problem of lack of available samples for zero-day attack detection in loT, we propose a zero-day attack detection method based on generative zero-shot learning …”
    Volltext
    Tagungsbericht
  18. 18

    Chaotic variational auto encoder-based adversarial machine learning von Pavan Venkata Sainadh Reddy, Daka, Vivek, Yelleti, Pranay, Gopi, Ravi, Vadlamani

    ISSN: 0045-7906
    Veröffentlicht: Elsevier Ltd 01.12.2025
    Veröffentlicht in Computers & electrical engineering (01.12.2025)
    “… This motivated us to propose a novel, computationally less expensive method for generating adversarial samples by employing a Variational Autoencoder (VAE …”
    Volltext
    Journal Article
  19. 19

    Variational Structure Learning for Semi-Supervised Classification von Marthoglou, Konstantinos, Vretos, Nicholas, Daras, Petros

    ISSN: 2161-0371
    Veröffentlicht: IEEE 22.09.2024
    “… Graph structure learning or GSL can help in alleviating this problem, although many algorithms have shallow message propagation schemes, ignoring the deep expressibility that is possible with multi-layer networks …”
    Volltext
    Tagungsbericht
  20. 20

    HetFCM: functional co-module discovery by heterogeneous network co-clustering von Tan, Haojiang, Guo, Maozu, Chen, Jian, Wang, Jun, Yu, Guoxian

    ISSN: 0305-1048, 1362-4962, 1362-4962
    Veröffentlicht: England Oxford University Press 09.02.2024
    Veröffentlicht in Nucleic acids research (09.02.2024)
    “… ) to detect functional co-modules. HetFCM introduces an attributed heterogeneous network to jointly model interplays and multi-type attributes of different molecules, and applies multiple variational graph autoencoders on the network …”
    Volltext
    Journal Article