Suchergebnisse - Variational Autoencoder, The Cancer Genome Atlas

  1. 1

    MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data von Albaradei, Somayah, Napolitano, Francesco, Thafar, Maha A., Gojobori, Takashi, Essack, Magbubah, Gao, Xin

    ISSN: 2001-0370, 2001-0370
    Veröffentlicht: Elsevier B.V 01.01.2021
    Veröffentlicht in Computational and structural biotechnology journal (01.01.2021)
    “… ), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA …”
    Volltext
    Journal Article
  2. 2

    Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders von Way, Gregory P., Greene, Casey S.

    ISBN: 9789813235526, 9789813235540, 9813235543, 9813235527, 9789813235533, 9813235535
    ISSN: 2335-6936, 2335-6936
    Veröffentlicht: United States WORLD SCIENTIFIC 01.01.2018
    Veröffentlicht in Biocomputing 2018 (01.01.2018)
    “… The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different cancer-types for many genomic features, including gene expression levels …”
    Volltext
    Buchkapitel Journal Article
  3. 3

    Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping von Li, Zuqi, Katz, Sonja, Saccenti, Edoardo, Fardo, David W, Claes, Peter, Martins dos Santos, Vitor A P, Van Steen, Kristel, Roshchupkin, Gennady V

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 23.09.2024
    Veröffentlicht in Briefings in bioinformatics (23.09.2024)
    “… Deep learning models, such as variational autoencoders (VAEs), can enhance clustering algorithms by leveraging inter-individual heterogeneity …”
    Volltext
    Journal Article
  4. 4

    Integrative Multi-Omics Prognostic Modeling of Glioma Recurrence Using Variational Autoencoder and Similarity Network Fusion von Tran, Phuong Lam, Tang, Yun, Hsu, Justin BoKai, Lee, Tzong-Yi

    ISSN: 2994-9408
    Veröffentlicht: IEEE 20.08.2025
    “… Multiomics data, including mRNA, miRNA, DNA methylation, and CNV profiles from 512 LGG and 350 GBM patients in The Cancer Genome Atlas (TCGA …”
    Volltext
    Tagungsbericht
  5. 5

    Cancer Subtyping Through Multi-Omics Feature Selection: A Review of Methods and the Superiority of Variational Autoencoders von Mukhdoomi, Muneeba Afzal, Chachoo, Manzoor Ahmad

    Veröffentlicht: IEEE 21.11.2024
    “… However, feature selection poses a challenge. This study leveraged The Cancer Genome Atlas (TCGA …”
    Volltext
    Tagungsbericht
  6. 6

    Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data von Franco, Edian F., Rana, Pratip, Cruz, Aline, Calderón, Víctor V., Azevedo, Vasco, Ramos, Rommel T. J., Ghosh, Preetam

    ISSN: 2072-6694, 2072-6694
    Veröffentlicht: Switzerland MDPI AG 22.04.2021
    Veröffentlicht in Cancers (22.04.2021)
    “… In this paper, we compared the performance of different deep learning autoencoders for cancer subtype detection …”
    Volltext
    Journal Article
  7. 7

    Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping von Cai, Yueyi, Wang, Shunfang

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 22.01.2024
    Veröffentlicht in Briefings in bioinformatics (22.01.2024)
    “… This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR …”
    Volltext
    Journal Article
  8. 8

    (\Gamma\)-VAE: Curvature regularized variational autoencoders for uncovering emergent low dimensional geometric structure in high dimensional data von Kim, Jason Z, Perrin-Gilbert, Nicolas, Narmanli, Erkan, Klein, Paul, Myers, Christopher R, Cohen, Itai, Waterfall, Joshua J, Sethna, James P

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.03.2024
    Veröffentlicht in arXiv.org (02.03.2024)
    “… For example, despite the tens of thousands of genes in the human genome, the principled study of genomics is fruitful because biological processes rely on coordinated organization that results …”
    Volltext
    Paper
  9. 9

    SiRCle (Signature Regulatory Clustering) model integration reveals mechanisms of phenotype regulation in renal cancer von Mora, Ariane, Schmidt, Christina, Balderson, Brad, Frezza, Christian, Bodén, Mikael

    ISSN: 1756-994X, 1756-994X
    Veröffentlicht: London BioMed Central 04.12.2024
    Veröffentlicht in Genome medicine (04.12.2024)
    “… Background Clear cell renal cell carcinoma (ccRCC) tumours develop and progress via complex remodelling of the kidney epigenome, transcriptome, proteome and …”
    Volltext
    Journal Article
  10. 10

    Inferring Personalized and Race-Specific Causal Effects of Genomic Aberrations on Gleason Scores: A Deep Latent Variable Model von Chen, Zhong, Edwards, Andrea, Hicks, Chindo, Zhang, Kun

    ISSN: 2234-943X, 2234-943X
    Veröffentlicht: Switzerland Frontiers Media S.A 13.03.2020
    Veröffentlicht in Frontiers in oncology (13.03.2020)
    “… ) of each individual PCa patient. The core of the proposed model is a deep variational autoencoder (VAE …”
    Volltext
    Journal Article
  11. 11

    A deep imputation and inference framework for estimating personalized and race-specific causal effects of genomic alterations on PSA von Chen, Zhong, Cao, Bo, Edwards, Andrea, Deng, Hongwen, Zhang, Kun

    ISSN: 1757-6334, 1757-6334
    Veröffentlicht: Singapore 01.08.2021
    Veröffentlicht in Journal of bioinformatics and computational biology (01.08.2021)
    “… Prostate Specific Antigen (PSA) level in the serum is one of the most widely used markers in monitoring prostate cancer (PCa …”
    Weitere Angaben
    Journal Article
  12. 12

    Transfer Learning Leverages Cancer Genomics for In Silico CRISPR/Cas9 Genetic Interaction Screen Surrogate Model von Chang, Daniel

    ISBN: 9798286450961
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2024
    “… Genome-wide CRISPR/Cas9 loss-of-function screens can effectively probe for genetic interactions by identifying differential genetic dependencies between co-isogenic "query mutant" cell lines …”
    Volltext
    Dissertation
  13. 13

    Genomic and Imaging Biomarker Analysis in Lung Cancer: A SHAP-Guided Approach von Sathya, A., R, Deevna Reddy, Blessy, J. Jino

    Veröffentlicht: IEEE 25.07.2025
    “… Gene expression data from The Cancer Genome Atlas (TCGA) is utilized to train Random Forest classifiers for predicting key oncogenic mutation statuses, including EGFR, KRAS, and ALK, achieving an accuracy of 93.5 …”
    Volltext
    Tagungsbericht
  14. 14

    Extracting a Biologically Relevant Latent Space from Cancer Transcriptomes with Variational Autoencoders von Way, Gregory P, Greene, Casey S

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 02.10.2017
    Veröffentlicht in bioRxiv (02.10.2017)
    “… The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different cancer-types for many genomic features, including gene expression levels …”
    Volltext
    Paper
  15. 15

    Unsupervised spatially embedded deep representation of spatial transcriptomics von Xu, Hang, Fu, Huazhu, Long, Yahui, Ang, Kok Siong, Sethi, Raman, Chong, Kelvin, Li, Mengwei, Uddamvathanak, Rom, Lee, Hong Kai, Ling, Jingjing, Chen, Ao, Shao, Ling, Liu, Longqi, Chen, Jinmiao

    ISSN: 1756-994X, 1756-994X
    Veröffentlicht: London BioMed Central 12.01.2024
    Veröffentlicht in Genome medicine (12.01.2024)
    “… simultaneously embedded with the corresponding spatial information through a variational graph autoencoder …”
    Volltext
    Journal Article
  16. 16

    Evaluating deep variational autoencoders trained on pan-cancer gene expression von Way, Gregory P, Greene, Casey S

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.11.2017
    Veröffentlicht in arXiv.org (13.11.2017)
    “… The Cancer Genome Atlas (TCGA) has released a large compendium of over 10,000 tumors with RNA-seq gene expression measurements …”
    Volltext
    Paper
  17. 17
  18. 18

    Deep generative neural network for accurate drug response imputation von Jia, Peilin, Hu, Ruifeng, Pei, Guangsheng, Dai, Yulin, Wang, Yin-Ying, Zhao, Zhongming

    ISSN: 2041-1723, 2041-1723
    Veröffentlicht: London Nature Publishing Group UK 19.03.2021
    Veröffentlicht in Nature communications (19.03.2021)
    “… In this study, we develop a deep variational autoencoder (VAE) model to compress thousands of genes into latent vectors in a low-dimensional space …”
    Volltext
    Journal Article
  19. 19

    Meta Cancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data von Albaradei, Somayah, Napolitano, Francesco, Thafar, Maha A, Gojobori, Takashi, Essack, Magbubah, Gao, Xin

    ISSN: 2001-0370, 2001-0370
    Veröffentlicht: Netherlands 2021
    “… ), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA …”
    Volltext
    Journal Article
  20. 20

    VTrans: A VAE-Based Pre-Trained Transformer Method for Microbiome Data Analysis von Shi, Xinyuan, Zhu, Fangfang, Min, Wenwen

    ISSN: 1557-8666, 1557-8666
    Veröffentlicht: United States 01.09.2025
    Veröffentlicht in Journal of computational biology (01.09.2025)
    “… Predicting the survival outcomes and assessing the risk of patients play a pivotal role in comprehending the microbial composition across various stages of cancer …”
    Weitere Angaben
    Journal Article