Suchergebnisse - Variation Graph Autoencoder (VGAE)

Andere Suchmöglichkeiten:

  • Treffer 1 - 6 von 6
Treffer weiter einschränken
  1. 1

    Optimization of Graph Convolutional Networks with Variational Graph Autoencoder Architecture for 3D Face Reconstruction Task von Batarfi, Mahfoudh M., Mareboyana, Manohar

    ISSN: 2768-0754
    Veröffentlicht: IEEE 08.05.2024
    Veröffentlicht in Intelligent Systems and Computer Vision (Online) (08.05.2024)
    “… To surmount these obstacles, the study embarks on the optimization of a Variational Graph Autoencoder (VGAE …”
    Volltext
    Tagungsbericht
  2. 2

    CVAM: CNA Profile Inference of the Spatial Transcriptome Based on the VGAE and HMM von Ma, Jian, Guo, Jingjing, Fan, Zhiwei, Zhao, Weiling, Zhou, Xiaobo

    ISSN: 2218-273X, 2218-273X
    Veröffentlicht: Switzerland MDPI AG 28.04.2023
    Veröffentlicht in Biomolecules (Basel, Switzerland) (28.04.2023)
    “… With the development of spatial transcriptome technologies, it is urgent to develop new tools to identify genomic variation from the spatial transcriptome …”
    Volltext
    Journal Article
  3. 3

    Self-Supervised Variational Graph Autoencoder for System-Level Anomaly Detection von Zhang, Le, Cheng, Wei, Xing, Ji, Chen, Xuefeng, Nie, Zelin, Zhang, Shuo, Hong, Junying, Xu, Zhao

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2023
    “… However, most industrial scenarios are without graphs. Hence, a self-supervised variational graph autoencoders (SS-VGAE) method is proposed …”
    Volltext
    Journal Article
  4. 4

    Enhancing the Performance of VGAE Architectures for Reconstruction High-Quality 3D Faces von Batarfi, Mahfoudh M

    ISBN: 9798382319131
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2024
    “… This research investigates methods to enhance the performance of Variational Graph Autoencoder (VGAE …”
    Volltext
    Dissertation
  5. 5

    DCMF-PPI: a protein-protein interaction predictor based on dynamic condition and multi-feature fusion von Chen, Siqi, Zheng, Anhong, Yu, Weichi, Zhan, Chao

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 15.10.2025
    Veröffentlicht in BMC bioinformatics (15.10.2025)
    “… Nevertheless, these approaches frequently overlook the dynamic nature of protein and PPI structures during cellular processes, including conformational alterations and variations in binding …”
    Volltext
    Journal Article
  6. 6

    Hierarchical Graph Neural Network Based on Semi-Implicit Variational Inference von Su, Hai-Long, Li, Zhi-Peng, Zhu, Xiao-Bo, Yang, Li-Na, Gribova, Valeriya, Filaretov, Vladimir Fedorovich, Cohn, Anthony G., Huang, De-Shuang

    ISSN: 2379-8920, 2379-8939
    Veröffentlicht: Piscataway IEEE 01.06.2023
    “… Recently, variational graph autoencoder (VGAE) has been proposed to solve this problem. However, the distributional assumptions in the variational family restrict the variational inference (VI …”
    Volltext
    Journal Article