Suchergebnisse - Theory of computation → Graph algorithms analysis

  1. 1

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs von Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Veröffentlicht: IEEE 01.09.2021
    “… Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs …”
    Volltext
    Tagungsbericht
  2. 2

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs von Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Veröffentlicht: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training …”
    Volltext
    Tagungsbericht
  3. 3

    BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning von Tong, Shengbo, Pei, Chunyan, Yu, Wenjian

    Veröffentlicht: IEEE 22.06.2025
    “… Thus, fast and high-quality deterministic partitioning algorithms are largely in demand …”
    Volltext
    Tagungsbericht
  4. 4

    ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy von Jiang, Zihan, Mao, Fubing, Guo, Yapu, Liu, Xu, Liu, Haikun, Liao, Xiaofei, Jin, Hai, Zhang, Wei

    Veröffentlicht: IEEE 09.07.2023
    “… Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates …”
    Volltext
    Tagungsbericht
  5. 5

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems von Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Veröffentlicht: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL …”
    Volltext
    Tagungsbericht
  6. 6

    SumPA: Efficient Pattern-Centric Graph Mining with Pattern Abstraction von Gui, Chuangyi, Liao, Xiaofei, Zheng, Long, Yao, Pengcheng, Wang, Qinggang, Jin, Hai

    Veröffentlicht: IEEE 01.09.2021
    “… Graph mining aims to explore interesting structural information of a graph. Pattern-centric systems typically transform a generic-purpose graph mining problem into a series of subgraph matching problems for high performance …”
    Volltext
    Tagungsbericht
  7. 7

    PIMGCN: A ReRAM-Based PIM Design for Graph Convolutional Network Acceleration von Yang, Tao, Li, Dongyue, Han, Yibo, Zhao, Yilong, Liu, Fangxin, Liang, Xiaoyao, He, Zhezhi, Jiang, Li

    Veröffentlicht: IEEE 05.12.2021
    “… Graph Convolutional Network (GCN) is a promising but computing- and memory-intensive learning model …”
    Volltext
    Tagungsbericht
  8. 8

    NeuraChip: Accelerating GNN Computations with a Hash-based Decoupled Spatial Accelerator von Shivdikar, Kaustubh, Agostini, Nicolas Bohm, Jayaweera, Malith, Jonatan, Gilbert, Abellan, Jose L., Joshi, Ajay, Kim, John, Kaeli, David

    Veröffentlicht: IEEE 29.06.2024
    “… Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatic …”
    Volltext
    Tagungsbericht
  9. 9

    DyGNN: Algorithm and Architecture Support of Dynamic Pruning for Graph Neural Networks von Chen, Cen, Li, Kenli, Zou, Xiaofeng, Li, Yangfan

    Veröffentlicht: IEEE 05.12.2021
    “… Recently, graph neural networks (GNNs) have achieved great success for graph representation learning tasks …”
    Volltext
    Tagungsbericht
  10. 10

    Parallelizing Maximal Clique Enumeration on GPUs von Almasri, Mohammad, Chang, Yen-Hsiang, Hajj, Izzat El, Nagi, Rakesh, Xiong, Jinjun, Hwu, Wen-mei

    Veröffentlicht: IEEE 21.10.2023
    “… We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm …”
    Volltext
    Tagungsbericht
  11. 11

    iG-kway: Incremental k-way Graph Partitioning on GPU von Lee, Wan Luan, Jiang, Shui, Lin, Dian-Lun, Chang, Che, Zhang, Boyang, Chung, Yi-Hua, Schlichtmann, Ulf, Ho, Tsung-Yi, Huang, Tsung-Wei

    Veröffentlicht: IEEE 22.06.2025
    “… Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates …”
    Volltext
    Tagungsbericht
  12. 12

    GPart: A GNN-Enabled Multilevel Graph Partitioner von Chen, Magi, Wang, Ting-Chi

    Veröffentlicht: IEEE 22.06.2025
    “… This paper introduces GPart, a scalable multilevel framework for graph partitioning that integrates GNN embeddings with efficient coarsening and refinement techniques …”
    Volltext
    Tagungsbericht
  13. 13

    LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing von Zhang, Lingling, Wu, Yijian, Jiang, Hong, Zhou, Ziyu, Lu, Tiancheng

    Veröffentlicht: IEEE 22.06.2025
    “… Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management …”
    Volltext
    Tagungsbericht
  14. 14

    EMGraph: Fast Learning-Based Electromigration Analysis for Multi-Segment Interconnect Using Graph Convolution Networks von Jin, Wentian, Chen, Liang, Sadiqbatcha, Sheriff, Peng, Shaoyi, Tan, Sheldon X.-D.

    Veröffentlicht: IEEE 05.12.2021
    “… VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN …”
    Volltext
    Tagungsbericht
  15. 15

    Late Breaking Results: An Efficient and Scalable Track Assignment with GPU Parallelism von Liu, Genggeng, Huang, Pengcheng, Li, Zepeng, Liu, Wen-Hao, Huang, Xing, Guo, Wenzhong

    Veröffentlicht: IEEE 22.06.2025
    “… Based on the independence and divisibility of track assignment, we propose a GPU-accelerated parallel track assignment algorithm …”
    Volltext
    Tagungsbericht
  16. 16

    Anchor First, Accelerate Next: Revolutionizing GNNs with PIM by Harnessing Stationary Data von Chen, Jiaxian, Qi, Yuxuan, Zhu, Yongbiao, Yuan, Jianan, Sun, Kaoyi, Wang, Tianyu, Ma, Chenlin, Wang, Yi

    Veröffentlicht: IEEE 22.06.2025
    “… Substantial data movement caused by irregular graph topologies hinders the efficient processing of graph neural networks (GNNs …”
    Volltext
    Tagungsbericht
  17. 17

    NEO-DNND: Communication-Optimized Distributed Nearest Neighbor Graph Construction von Iwabuchi, Keita, Steil, Trevor, Priest, Benjamin W., Pearce, Roger, Sanders, Geoffrey

    Veröffentlicht: IEEE 17.11.2024
    “… Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality …”
    Volltext
    Tagungsbericht
  18. 18

    SGIRR: Sparse Graph Index Remapping for ReRAM Crossbar Operation Unit and Power Optimization von Wang, Cheng-Yuan, Chang, Yao-Wen, Chang, Yuan-Hao

    ISSN: 1558-2434
    Veröffentlicht: ACM 29.10.2022
    “… Resistive Random Access Memory (ReRAM) Crossbars are a promising process-in-memory technology to reduce enormous data movement overheads of large-scale graph processing between computation and memory units …”
    Volltext
    Tagungsbericht
  19. 19

    PSMiner: A Pattern-Aware Accelerator for High-Performance Streaming Graph Pattern Mining von Qi, Hao, Zhang, Yu, He, Ligang, Luo, Kang, Huang, Jun, Lu, Haoyu, Zhao, Jin, Jin, Hai

    Veröffentlicht: IEEE 09.07.2023
    “… Streaming Graph Pattern Mining (GPM) has been widely used in many application fields …”
    Volltext
    Tagungsbericht
  20. 20

    Dynamic Allocation of Processor Cores to Graph Applications on Commodity Servers von Pons, Lucia, Sahuauillo, Julio, Jones, Timothy M.

    Veröffentlicht: IEEE 21.10.2023
    “… Graph processing is increasingly adopted to solve problems that span many application domains, including scientific computing, social networks, and big-data analytics …”
    Volltext
    Tagungsbericht