Suchergebnisse - Surrogate sub-gradient algorithm

  • Treffer 1 - 11 von 11
Treffer weiter einschränken
  1. 1

    Supply chain networks design with multi-mode demand satisfaction policy von Ardalan, Zaniar, Karimi, Sajad, Naderi, B., Arshadi Khamseh, Alireza

    ISSN: 0360-8352, 1879-0550
    Veröffentlicht: New York Elsevier Ltd 01.06.2016
    Veröffentlicht in Computers & industrial engineering (01.06.2016)
    “… •This paper deals with a supply chain network design with multi-mode demand.•The problem is mathematically formulated as mixed integer linear programming.•A …”
    Volltext
    Journal Article
  2. 2

    Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization von Ma, Jiaqi, Li, Xiaopeng, Zhou, Fang, Hu, Jia, Park, B. Brian

    ISSN: 0191-2615, 1879-2367
    Veröffentlicht: Oxford Elsevier Ltd 01.01.2017
    Veröffentlicht in Transportation research. Part B: methodological (01.01.2017)
    “… ) proposed a parsimonious shooting heuristic (SH) algorithm for constructing feasible trajectories for a stream of vehicles considering realistic constraints including …”
    Volltext
    Journal Article
  3. 3

    A new envelope function for nonsmooth DC optimization von Themelis, Andreas, Hermans, Ben, Patrinos, Panagiotis

    ISSN: 2576-2370
    Veröffentlicht: IEEE 14.12.2020
    “… ". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully nonsmooth formulations …”
    Volltext
    Tagungsbericht
  4. 4

    A Fast and Efficient Data Association of Passive Sensor Tracking von Changning Tong, Yuesong Lin, Yunfei Guo, Yan Zuo

    ISBN: 9781424472796, 1424472792
    Veröffentlicht: IEEE 01.05.2010
    “… The sub gradient is applied to update the Lagrange multipliers, but it needs to minimize all the sub problems at every iterative time to solve the dual solution in the classic algorithm …”
    Volltext
    Tagungsbericht
  5. 5

    A new envelope function for nonsmooth DC optimization von Themelis, Andreas, Hermans, Ben, Patrinos, Panagiotis

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 31.03.2020
    Veröffentlicht in arXiv.org (31.03.2020)
    “… ". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully nonsmooth formulations …”
    Volltext
    Paper
  6. 6

    Large-margin classification with multiple decision rules von Kimes, Patrick K., Hayes, David Neil, Marron, J. S., Liu, Yufeng

    ISSN: 1932-1864, 1932-1872
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2016
    Veröffentlicht in Statistical analysis and data mining (01.04.2016)
    “… Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome, indicating the membership …”
    Volltext
    Journal Article
  7. 7

    Zeroth-order Proximal Clipped Gradient Method with Shifts for Distributed Stochastic Composite Optimization Problems with Infinite Variance von Yang, Zhen-Ping, Chen, Pin-Bo, Zhao, Yong, Chen, Lin

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer Nature B.V 01.11.2025
    Veröffentlicht in Journal of scientific computing (01.11.2025)
    “… -)gradient information may be unavailable. We present a mini-batch zeroth-order proximal clipped gradient algorithm with shifts, which utilizes the well-known Gaussian smoothing technique to yield unbiased zeroth-order gradient estimators …”
    Volltext
    Journal Article
  8. 8

    Zeroth-order Proximal Clipped Gradient Method with Shifts for Distributed Stochastic Composite Optimization Problems with Infinite Variance: Zeroth-order Proximal Clipped Gradient Method with von Yang, Zhen-Ping, Chen, Pin-Bo, Zhao, Yong, Chen, Lin

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 22.09.2025
    Veröffentlicht in Journal of scientific computing (22.09.2025)
    “… -)gradient information may be unavailable. We present a mini-batch zeroth-order proximal clipped gradient algorithm with shifts, which utilizes the well-known Gaussian smoothing technique to yield unbiased zeroth-order gradient estimators …”
    Volltext
    Journal Article
  9. 9

    Large-Margin Classification with Multiple Decision Rules von Kimes, Patrick K, Hayes, D Neil, Marron, J S, Liu, Yufeng

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.11.2014
    Veröffentlicht in arXiv.org (19.11.2014)
    “… Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome indicating the membership …”
    Volltext
    Paper
  10. 10

    Optimization methods for regularized convex formulations in machine learning von Lee, Sang Kyun

    ISBN: 9781267055095, 126705509X
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2011
    “… We develop efficient numerical optimization algorithms for regularized convex formulations that appear in a variety of areas such as machine learning, statistics, and signal processing …”
    Volltext
    Dissertation
  11. 11

    A Zeroth-order Proximal Stochastic Gradient Method for Weakly Convex Stochastic Optimization von Pougkakiotis, Spyridon, Kalogerias, Dionysios S

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.11.2022
    Veröffentlicht in arXiv.org (07.11.2022)
    “… We consider nonsmooth and nonlinear stochastic composite problems, for which (sub-)gradient information might be unavailable …”
    Volltext
    Paper