Suchergebnisse - Subgraph selection algorithm
-
1
A Self-Adaptive Subgraph Generation Algorithm for EEG Channel Selection
ISSN: 1945-8452Veröffentlicht: IEEE 27.05.2024Veröffentlicht in Proceedings (International Symposium on Biomedical Imaging) (27.05.2024)“… In this paper, a self-adaptive subgraph generation algorithm for EEG channel selection (SSGE), built on the base of graph convolution network (GCN …”
Volltext
Tagungsbericht -
2
Parallel custom instruction identification for extensible processors
ISSN: 1383-7621, 1873-6165Veröffentlicht: Elsevier B.V 01.05.2017Veröffentlicht in Journal of systems architecture (01.05.2017)“… Determining parts of application code as custom instruction generally requires subgraph enumeration and subgraph selection …”
Volltext
Journal Article -
3
Incremental Subgraph Feature Selection for Graph Classification
ISSN: 1041-4347, 1558-2191Veröffentlicht: New York IEEE 01.01.2017Veröffentlicht in IEEE transactions on knowledge and data engineering (01.01.2017)“… In this paper, we propose a primal-dual incremental subgraph feature selection algorithm (ISF) based on a max-margin graph classifier …”
Volltext
Journal Article -
4
Improving high-level synthesis effectiveness through custom operator identification
ISSN: 0271-4302Veröffentlicht: IEEE 01.06.2014Veröffentlicht in IEEE International Symposium on Circuits and Systems proceedings (01.06.2014)“… It is increasingly common to see custom operators appear in various fields of circuit design. Custom operators that can be implemented in special hardware …”
Volltext
Tagungsbericht -
5
Augmentation of Densest Subgraph Finding Unsupervised Feature Selection Using Shared Nearest Neighbor Clustering
ISSN: 1999-4893, 1999-4893Veröffentlicht: Basel MDPI AG 01.01.2023Veröffentlicht in Algorithms (01.01.2023)“… To mitigate the same, this paper presents a new unsupervised feature selection method, termed as densest feature graph augmentation with disjoint feature clusters …”
Volltext
Journal Article -
6
Two provably consistent divide-and-conquer clustering algorithms for large networks
ISSN: 1091-6490, 1091-6490Veröffentlicht: United States 02.11.2021Veröffentlicht in Proceedings of the National Academy of Sciences - PNAS (02.11.2021)“… We propose two algorithms that perform clustering on several small subgraphs and finally patch the results into a single clustering …”
Weitere Angaben
Journal Article -
7
Modifications of the algorithm for selection isomorphic subgraphs from graph
ISBN: 146730283X, 9781467302838Veröffentlicht: IEEE 01.02.2012Veröffentlicht in 2012 11th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (01.02.2012)“… In this paper considered two modifications of the algorithm for selection isomorphic subgraphs from graph …”
Volltext
Tagungsbericht -
8
High-quality topological structures selection for smart city land spatial understanding and governance
ISSN: 0167-739X, 1872-7115Veröffentlicht: Elsevier B.V 01.11.2020Veröffentlicht in Future generation computer systems (01.11.2020)“… Due to the acceleration of urbanization process in modern society, there are many metropolises throughout the world, such as New York, Tokyo, and Shanghai …”
Volltext
Journal Article -
9
MR-SimLab: Scalable subgraph selection with label similarity for big data
ISSN: 0306-4379, 1873-6076Veröffentlicht: Oxford Elsevier Ltd 01.09.2017Veröffentlicht in Information systems (Oxford) (01.09.2017)“… •Existing feature selection algorithms are facing a scalability challenge.•We propose MR-SimLab, a MapReduce-based subgraph selection approach for big data …”
Volltext
Journal Article -
10
Supervised feature selection using integration of densest subgraph finding with floating forward–backward search
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 01.08.2021Veröffentlicht in Information sciences (01.08.2021)“… In this paper, a novel approach of supervised feature selection is proposed based on the principle of dense subgraph discovery …”
Volltext
Journal Article -
11
A comparison of heuristic algorithms for custom instruction selection
ISSN: 0141-9331, 1872-9436Veröffentlicht: Elsevier B.V 01.08.2016Veröffentlicht in Microprocessors and microsystems (01.08.2016)“… : subgraph enumeration and subgraph selection. In this paper, we focus on the subgraph selection problem, which has been widely recognized as a computationally difficult problem …”
Volltext
Journal Article -
12
Subgraph Matching with Set Similarity in a Large Graph Database
ISSN: 1041-4347Veröffentlicht: IEEE 01.09.2015Veröffentlicht in IEEE transactions on knowledge and data engineering (01.09.2015)“… In this paper, we study a subgraph matching with set similarity (SMS 2 ) query over a large graph database, which retrieves subgraphs that are structurally isomorphic …”
Volltext
Journal Article -
13
Tps: A new way to find good vertex-search order for exact subgraph matching
ISSN: 1573-7721, 1380-7501, 1573-7721Veröffentlicht: New York Springer US 01.08.2024Veröffentlicht in Multimedia tools and applications (01.08.2024)“… Selecting an optimal vertex-searching order can greatly improve a subgraph searching algorithm's effectiveness, yet a comprehensive theory for this selection is lacking …”
Volltext
Journal Article -
14
Applying novel connectivity networks to wood turtle populations to provide comprehensive conservation management strategies for species at risk
ISSN: 1932-6203, 1932-6203Veröffentlicht: San Francisco Public Library of Science 12.08.2022Veröffentlicht in PloS one (12.08.2022)“… BRIDES characterizes different types of shortest paths among the nodes of a subgraph and compares the shortest paths among the same nodes in a complete network …”
Volltext
Journal Article -
15
Overlapping Community Detection Algorithm Based on Subgraph Structure
ISSN: 1002-137XVeröffentlicht: Editorial office of Computer Science 01.09.2021Veröffentlicht in Ji suan ji ke xue (01.09.2021)“… Local community detection algorithms usually select seed nodes for community detection.To improve the quality of effectiveness of seed node selection,we propose …”
Volltext
Journal Article -
16
Integration of dense subgraph finding with feature clustering for unsupervised feature selection
ISSN: 0167-8655, 1872-7344Veröffentlicht: Elsevier B.V 15.04.2014Veröffentlicht in Pattern recognition letters (15.04.2014)“… •Superiority over three existing methods is established for eight data sets. In this article a dense subgraph finding approach is adopted for the unsupervised feature selection problem …”
Volltext
Journal Article -
17
Brain Network Classification Method with Subgraph Selection and Graph-Kernel-Based Dimensionality Reduction
ISSN: 1673-9418Veröffentlicht: 01.10.2014Veröffentlicht in Jisuanji Kexue yu Tansuo / Journal of Computer Science and Frontiers (01.10.2014)“… Firstly, this method mines two groups of frequent subgraphs from positive and negative classes respectively, and then selects the most discriminative subgraphs using the subgraph selection algorithm …”
Volltext
Journal Article -
18
Depression Classification Using Frequent Subgraph Mining Based on Pattern Growth of Frequent Edge in Functional Magnetic Resonance Imaging Uncertain Network
ISSN: 1662-453X, 1662-4548, 1662-453XVeröffentlicht: Switzerland Frontiers Media S.A 29.04.2022Veröffentlicht in Frontiers in neuroscience (29.04.2022)“… ; for example, the mining uncertain subgraph patterns (MUSE) method was used to mine frequent subgraphs and the discriminative feature selection for uncertain graph classification (DUG …”
Volltext
Journal Article -
19
Overlapping Community Detection Algorithm Based on High-Quality Subgraph Extension in Local Core Regions of Network
ISSN: 1530-8669, 1530-8677Veröffentlicht: Oxford Hindawi 2023Veröffentlicht in Wireless communications and mobile computing (2023)“… of calculation caused by deleting nodes in the process of seed expansion. This paper proposes an overlapping community detection algorithm based on high-quality subgraph extension in local core regions of the network (OLCRE …”
Volltext
Journal Article -
20
Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis
ISSN: 1556-6013, 1556-6021Veröffentlicht: IEEE 01.08.2018Veröffentlicht in IEEE transactions on information forensics and security (01.08.2018)“… approach for accelerating malware analysis. Furthermore, the selection of representative malware samples in each family can drastically decrease the number of malware to be analyzed …”
Volltext
Journal Article

