Suchergebnisse - Stacked denoising variational autoencoder model

  • Treffer 1 - 16 von 16
Treffer weiter einschränken
  1. 1

    Stacked Denoising Variational Auto Encoder Model for Extractive Web Text Summarization von Yadav, Madhuri, Katarya, Rahul

    ISSN: 2228-6179, 2364-1827
    Veröffentlicht: Cham Springer International Publishing 01.12.2024
    “… of a lot of storage and time. To solve this issue, the continuous bag of words text vectorization model has been used that reduce the processing time by producing a distributed combination of words in vector arrangement …”
    Volltext
    Journal Article
  2. 2

    Robust prediction of remaining useful lifetime of bearings using deep learning von Magadán, L., Granda, J.C., Suárez, F.J.

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.04.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.04.2024)
    “… With the technological advances of Industry 4.0, physical models for prognostics and RUL prediction have been replaced by data-driven models that require no expert feature extraction …”
    Volltext
    Journal Article
  3. 3

    Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder von Yan, Xiaoan, Xu, Yadong, She, Daoming, Zhang, Wan

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Switzerland MDPI AG 24.12.2021
    Veröffentlicht in Entropy (Basel, Switzerland) (24.12.2021)
    “… Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE …”
    Volltext
    Journal Article
  4. 4

    Support Vector Machine – Recursive Feature Elimination for Feature Selection on Multi-omics Lung Cancer Data von Azman, Nuraina Syaza, A Samah, Azurah, Lin, Ji Tong, Abdul Majid, Hairudin, Ali Shah, Zuraini, Wen, Nies Hui, Howe, Chan Weng

    ISSN: 2637-1049, 2637-1049
    Veröffentlicht: HH Publisher 04.04.2023
    Veröffentlicht in Progress in Microbes and Molecular Biology (04.04.2023)
    “… Biological data obtained from sequencing technologies is growing exponentially. Multi-omics data is one of the biological data that exhibits high …”
    Volltext
    Journal Article
  5. 5

    Comparative Analysis of Deep Learning Algorithm for Cancer Classification using Multi-omics Feature Selection von Azmi, Nur Sabrina, A Samah, Azurah, Sirgunan, Vivekaanan, Ali Shah, Zuraini, Abdul Majid, Hairudin, Howe, Chan Weng, Wen, Nies Hui, Azman, Nuraina Syaza

    ISSN: 2637-1049, 2637-1049
    Veröffentlicht: HH Publisher 06.10.2022
    Veröffentlicht in Progress in Microbes and Molecular Biology (06.10.2022)
    “… This study aims to investigate how deep learning algorithms, namely stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  6. 6
  7. 7

    Augmenting deviation of faults from the normal using fault assistant Gaussian mixture prior variational autoencoder von Lee, Yi Shan, Chen, Junghui

    ISSN: 1876-1070, 1876-1089
    Veröffentlicht: Elsevier B.V 01.01.2022
    “… •Abnormal data are used to augment the deviation of the fault from the normal.•Non-negative information sharing and transferring improve model accuracy …”
    Volltext
    Journal Article
  8. 8

    VMD-SEAE-TL-Based Data-Driven soft sensor modeling for a complex industrial batch processes von Ren, Jun-Chao, Liu, Ding, Wan, Yin

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: Elsevier Ltd 01.07.2022
    “… •A stack enhanced autoencoder algorithm based on VMD is proposed in this paper. Here, VMD is implemented by decomposing and reconstructing the original data to eliminate the noise in the data …”
    Volltext
    Journal Article
  9. 9

    A comprehensive review on encoder–decoder architectures in ECG signal compression and denoising: opportunities, challenges, and prospects von Das, Maumita, Sahana, Bikash Chandra

    ISSN: 2446-4732, 2446-4740
    Veröffentlicht: Cham Springer International Publishing 01.12.2025
    Veröffentlicht in Research on biomedical engineering (01.12.2025)
    “… For effective real-time ECG signal transmission via wearables or telemetry systems, the denoising autoencoder (DAE …”
    Volltext
    Journal Article
  10. 10

    Deep Autoencoder Architectures For Foreground Object Detection In Video Sequences Based On Probabilistic Mixture Models von Garcia-Gonzalez, Jorge, Molina-Cabello, Miguel A., Luque-Baena, Rafael M., Ortiz-de-Lazcano-Lobato, Juan M., Lopez-Rubio, Ezequiel

    ISSN: 2381-8549
    Veröffentlicht: IEEE 01.10.2020
    “… Therefore, different types of autoencoders, deterministic and variational, with different architectures, activation functions and number of layers, are analyzed …”
    Volltext
    Tagungsbericht
  11. 11

    A Three-Stage Ensemble Short-Term Wind Power Prediction Method Based on VMD-WT Transform and SDAE Deep Learning von Xiaosheng, Peng, Zuowei, Zhang, Qiyou, Xu, Bo, Wang, Jianfeng, Che, Fan, Yang, Wenze, Li, Zian, Huang

    Veröffentlicht: IEEE 01.07.2020
    “… Second, in stage two, multiple stacked denoising auto-encoders (SDAE) are constructed based on the subsequences to perform WPPs separately …”
    Volltext
    Tagungsbericht
  12. 12

    Stochastic Gradient Variational Bayes for deep learning-based ASR von Tjandra, Andros, Sakti, Sakriani, Nakamura, Satoshi, Adriani, Mirna

    Veröffentlicht: IEEE 01.12.2015
    “… Many successful methods for training deep neural networks (DNN) rely on an unsupervised pretraining algorithm. It is particularly effective when the number of …”
    Volltext
    Tagungsbericht
  13. 13

    Variational Discriminative Stacked Auto-Encoder: Feature Representation Using a Prelearned Discriminator, and Its Application to Industrial Process Monitoring von Huang, Jian, Sun, Xiaoyang, Ding, Steven X., Yang, Xu, Ersoy, Okan K.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.05.2025
    “… In deep-learning-based process monitoring, obtaining an effective feature representation is a critical step in constructing a reliable deep-learning monitoring model …”
    Volltext
    Journal Article
  14. 14

    A short‐term wind power prediction method based on deep learning and multistage ensemble algorithm von Peng, Xiaosheng, Li, Cong, Jia, Shiyuan, Zhou, Liangsong, Wang, Bo, Che, Jianfeng

    ISSN: 1095-4244, 1099-1824
    Veröffentlicht: Bognor Regis John Wiley & Sons, Inc 01.09.2022
    Veröffentlicht in Wind energy (Chichester, England) (01.09.2022)
    “… In the second stage, based on the decomposition sequences, the stacked denoising autoencoder (SDAE), long short‐term memory (LSTM), and bidirectional long short …”
    Volltext
    Journal Article
  15. 15

    Forecasting regional carbon prices in china with a hybrid model based on quadratic decomposition and comprehensive feature screening von Yi, Yaoyang

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 30.06.2025
    Veröffentlicht in PloS one (30.06.2025)
    “… This work presents a hybrid model incorporating comprehensive feature screening, optimized quadratic decomposition, and the Optuna-Attention-LSTM prediction method, aiming to improve the accuracy …”
    Volltext
    Journal Article
  16. 16

    Depth feature extraction-based deep ensemble learning framework for high frequency futures price forecasting von Wang, Jujie, Chen, Yu, Zhu, Shuzhou, Xu, Wenjie

    ISSN: 1051-2004, 1095-4333
    Veröffentlicht: Elsevier Inc 01.07.2022
    Veröffentlicht in Digital signal processing (01.07.2022)
    “… ), an improved denoising variational mode decomposition (VMD) is proposed to extract the fluctuation characteristics of futures price signal and eliminate the interference of complex components …”
    Volltext
    Journal Article