Suchergebnisse - Stacked denoising convolution autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Temporal denoising and deep feature learning for enhanced defect detection in thermography using stacked denoising convolution autoencoder von Yerneni, Naga Prasanthi, Ghali, V.S., Vesala, G.T., Wang, Fei, Mulaveesala, Ravibabu

    ISSN: 1350-4495
    Veröffentlicht: Elsevier B.V 01.12.2024
    Veröffentlicht in Infrared physics & technology (01.12.2024)
    “… •Temporal denoising of thermal profiles along with deep feature learning for enhanced defect detection in FMTWI is highlighted through a stacked denoising convolution autoencoder …”
    Volltext
    Journal Article
  2. 2

    Anomaly Detection Through Deep Feature Extraction for Automatic Defect Detection in Quadratic Frequency Modulated Thermal Wave Imaging von Yerneni, Naga Prasanthi, Ghali, V. S., Swapna, M. N., Vesala, G. T.

    ISSN: 1061-8309, 1608-3385
    Veröffentlicht: Moscow Pleiades Publishing 01.04.2025
    Veröffentlicht in Russian journal of nondestructive testing (01.04.2025)
    “… The proposed model utilizes the pretrained stacked denoising convolution autoencoder (SDCAE) to extract deep features and feed them to a local outlier factor (LOF …”
    Volltext
    Journal Article
  3. 3

    Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder von Xiong, Yihui, Zuo, Renguang

    ISSN: 1874-8961, 1874-8953
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
    Veröffentlicht in Mathematical geosciences (01.04.2022)
    “… Our approach adopted a stacked convolutional denoising autoencoder (SCDAE) to extract robust features and decreased the level of sensitivity to partially corrupted data, that is, input data that are partially missing …”
    Volltext
    Journal Article
  4. 4

    Reduced Biquaternion Stacked Denoising Convolutional AutoEncoder for RGB-D Image Classification von Huang, Xiang, Gai, Shan

    ISSN: 1070-9908, 1558-2361
    Veröffentlicht: New York IEEE 2021
    Veröffentlicht in IEEE signal processing letters (2021)
    “… To address these problems, this letter proposes a novel RGB-D image classification framework based on reduced biquaternion stacked denoising convolutional autoencoder (RQ-SDCAE …”
    Volltext
    Journal Article
  5. 5

    Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder von Chen, Meng, Li, Yongjian, Zhang, Liting, Liu, Lei, Han, Baokun, Shi, Wenzhuo, Wei, Shoushui

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.04.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.04.2024)
    “… To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study …”
    Volltext
    Journal Article
  6. 6

    Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network von Che, Changchang, Wang, Huawei, Ni, Xiaomei, Fu, Qiang

    ISSN: 0036-8792, 1758-5775
    Veröffentlicht: Bradford Emerald Publishing Limited 17.09.2020
    Veröffentlicht in Industrial lubrication and tribology (17.09.2020)
    “… To solve those problems, an intelligent fault diagnosis model based on stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  7. 7

    Gaussian Mixture with Max Expectation Guide for Stacked Architecture of Denoising Autoencoder and DRBM for Medical Chest Scans and Disease Identification von Jamjoom, Mona, Mahmoud, Abeer M., Abbas, Safia, Hodhod, Rania

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.01.2023
    Veröffentlicht in Electronics (Basel) (01.01.2023)
    “… ) to extract the regions of interest (ROI), while a convolutional denoising autoencoder (DAE) and deep restricted Boltzmann machine …”
    Volltext
    Journal Article
  8. 8

    A Hierarchical Intrusion Detection Model Combining Multiple Deep Learning Models With Attention Mechanism von Xu, Hongsheng, Sun, Libo, Fan, Ganglong, Li, Wanxing, Kuang, Guofang

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2023
    Veröffentlicht in IEEE access (01.01.2023)
    “… In order to ensure the security of computer systems and networks, it is very important to design and implement intrusion detection systems that can detect and …”
    Volltext
    Journal Article
  9. 9

    One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis von Yu, Jianbo, Zhou, Xingkang

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.10.2020
    Veröffentlicht in IEEE transactions on industrial informatics (01.10.2020)
    “… In this article, a new DNN, one-dimensional residual convolutional autoencoder (1-DRCAE), is proposed for learning features from vibration signals directly in an unsupervised-learning way …”
    Volltext
    Journal Article
  10. 10

    Single channel audio source separation using convolutional denoising autoencoders von Grais, Emad M., Plumbley, Mark D.

    Veröffentlicht: IEEE 01.11.2017
    “… In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation …”
    Volltext
    Tagungsbericht
  11. 11

    Enhancing Human Activity Recognition with IMU-based Motion Analysis von Singh, Arth, Verma, Aditya, Cherukuri, Babitha

    Veröffentlicht: IEEE 15.12.2023
    “… In this research, we delve into the domain of Human Activity Recognition (HAR) using deep learning techniques applied to data collected from a single wearable …”
    Volltext
    Tagungsbericht
  12. 12

    Rolling Bearing Fault Diagnosis Method Based on Stacked Denoising Autoencoder and Convolutional Neural Network von Wang, Yumin, Han, Minghong, Liu, Wei

    Veröffentlicht: IEEE 01.08.2019
    “… A fault diagnosis method towards non-stationary signal is proposed in this paper. A fault diagnosis model of combining stacked denoising autoencoder (SDAE …”
    Volltext
    Tagungsbericht
  13. 13

    Stacked Convolutional Denoising Auto-Encoders for Feature Representation von Du, Bo, Xiong, Wei, Wu, Jia, Zhang, Lefei, Zhang, Liangpei, Tao, Dacheng

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.04.2017
    Veröffentlicht in IEEE transactions on cybernetics (01.04.2017)
    “… To solve this problem, this paper proposes an unsupervised deep network, called the stacked convolutional denoising auto-encoders, which can map images to hierarchical representations without any label information …”
    Volltext
    Journal Article
  14. 14

    Deep Learning-Based Machinery Fault Diagnostics

    ISBN: 3036551743, 9783036551746, 9783036551739, 3036551735
    Veröffentlicht: MDPI - Multidisciplinary Digital Publishing Institute 2022
    “… This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of …”
    Volltext
    E-Book
  15. 15

    Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery von Guo, Xiaojie, Shen, Changqing, Chen, Liang

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.01.2017
    Veröffentlicht in Applied sciences (01.01.2017)
    “… ) and deep convolution neural network (DCNN), have been developed with satisfactory performances to conduct machinery fault diagnosis …”
    Volltext
    Journal Article
  16. 16

    The Analysis about Compressed Sensing Reconstruction Algorithm Based on Machine Learning Applied in Interference Multispectral Images von Han, Chang

    ISSN: 1687-5680, 1687-5699
    Veröffentlicht: New York Hindawi 01.01.2021
    Veröffentlicht in Advances in multimedia (01.01.2021)
    “… In order to make up for the shortcomings of traditional compression and reconstruction algorithms, the stacked convolution denoising autoencoder (SCDA …”
    Volltext
    Journal Article
  17. 17

    A Comparative Study of Object Tracking using CNN and SDAE von Yang, Wei, Wang, Wei, Gao, Yang, Jin, Zhanpeng

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2018
    “… ) and the stacked denoising autoencoder (SDAE), as opposed to the most frequently used tracking algorithms that only learn the appearance of the tracked object …”
    Volltext
    Tagungsbericht
  18. 18

    EIT-CDAE: A 2-D Electrical Impedance Tomography Image Reconstruction Method Based on Auto Encoder Technique von Gao, Yue, Lu, Yewangqing, Li, Hui, Liu, Boxiao, Li, Yongfu, Chen, Mingyi, Wang, Guoxing, Lian, Yong

    Veröffentlicht: IEEE 01.10.2019
    “… Therefore, in this work, we have proposed a new EIT image reconstruction algorithm based on the convolution denoising autoencoder (CDAE …”
    Volltext
    Tagungsbericht
  19. 19

    Control System Response Improvement via Denoising Using Deep Neural Networks von Fathi, Kiavash, Mahdavi, Mehdi

    Veröffentlicht: IEEE 01.10.2019
    “… Noise is an inseparable part of control systems. Every sensor reading used for determining the state of a control system is corrupted with noise., therefor …”
    Volltext
    Tagungsbericht
  20. 20