Suchergebnisse - Special Issue on Software Testing in the Machine Learning Era
-
1
Software testing in the machine learning era: Special issue of the empirical Software Engineering (EMSE) journal
ISSN: 1382-3256, 1573-7616Veröffentlicht: New York Springer US 01.05.2023Veröffentlicht in Empirical software engineering : an international journal (01.05.2023)Volltext
Journal Article -
2
Software testing in the machine learning era
ISSN: 1382-3256, 1573-7616Veröffentlicht: Dordrecht Springer Nature B.V 01.06.2023Veröffentlicht in Empirical software engineering : an international journal (01.06.2023)Volltext
Journal Article -
3
Bugs in machine learning-based systems: a faultload benchmark
ISSN: 1382-3256, 1573-7616Veröffentlicht: New York Springer US 01.06.2023Veröffentlicht in Empirical software engineering : an international journal (01.06.2023)“… The rapid escalation of applying Machine Learning (ML) in various domains has led to paying more attention to the quality of ML components …”
Volltext
Journal Article -
4
A controlled experiment of different code representations for learning-based program repair
ISSN: 1382-3256, 1573-7616Veröffentlicht: New York Springer US 01.12.2022Veröffentlicht in Empirical software engineering : an international journal (01.12.2022)“… Training a deep learning model on source code has gained significant traction recently …”
Volltext
Journal Article -
5
Towards understanding quality challenges of the federated learning for neural networks: a first look from the lens of robustness
ISSN: 1382-3256, 1573-7616Veröffentlicht: New York Springer US 01.03.2023Veröffentlicht in Empirical software engineering : an international journal (01.03.2023)“… Federated learning (FL) is a distributed learning paradigm that preserves users’ data privacy while leveraging the entire dataset of all participants …”
Volltext
Journal Article -
6
DiverGet: a Search-Based Software Testing approach for Deep Neural Network Quantization assessment
ISSN: 1382-3256, 1573-7616Veröffentlicht: New York Springer US 01.12.2022Veröffentlicht in Empirical software engineering : an international journal (01.12.2022)“… Traditional testing methods, which gather more and more genuine data for better assessment, are often not practical because of the large size of the input …”
Volltext
Journal Article -
7
Neural Network Guided Spatial Fault Resilience in Array Processors
ISSN: 0923-8174, 1573-0727Veröffentlicht: Boston Springer US 01.08.2013Veröffentlicht in Journal of electronic testing (01.08.2013)“… -to-chip and within-chip variation of MOSFET threshold voltage. In this paper, we propose a software-framework using machine learning for in-situ prediction and correction of computation corrupted due to threshold voltage variation of transistors …”
Volltext
Journal Article