Suchergebnisse - Special Issue of the Inductive Logic Programming (ILP) 2019
-
1
Guest editors’ introduction: special issue on Inductive Logic Programming (ILP 2019)
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)Volltext
Journal Article -
2
Inductive general game playing
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… In the GGP competition, an agent is given the rules of a game (described as a logic program …”
Volltext
Journal Article -
3
Learning higher-order logic programs
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… A key feature of inductive logic programming is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs …”
Volltext
Journal Article -
4
Logical reduction of metarules
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… Many forms of inductive logic programming (ILP) use metarules , second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space …”
Volltext
Journal Article -
5
Propositionalization and embeddings: two sides of the same coin
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… Data preprocessing is an important component of machine learning pipelines, which requires ample time and resources. An integral part of preprocessing is data …”
Volltext
Journal Article -
6
Transfer learning by mapping and revising boosted relational dependency networks
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… Statistical machine learning algorithms usually assume the availability of data of considerable size to train the models. However, they would fail in …”
Volltext
Journal Article -
7
Constructing generative logical models for optimisation problems using domain knowledge
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2020Veröffentlicht in Machine learning (01.07.2020)“… Here we investigate the use of Inductive Logic Programming (ILP) to construct models within a procedure that progressively …”
Volltext
Journal Article -
8
Preface to special issue on Inductive Logic Programming, ILP 2017 and 2018
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… Inductive Logic Programming (ILP) is a field at the intersection of Machine Learning and Logic Programming, based on logic as a uniform representation language …”
Volltext
Journal Article -
9
Learning efficient logic programs
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… However, existing inductive logic programming (ILP) techniques cannot distinguish between the efficiencies of programs, such as permutation sort ( n !) and merge sort O ( n l o g n …”
Volltext
Journal Article -
10
Lifted discriminative learning of probabilistic logic programs
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… Probabilistic logic programming (PLP) provides a powerful tool for reasoning with uncertain relational models …”
Volltext
Journal Article -
11
Online probabilistic theory revision from examples with ProPPR
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks …”
Volltext
Journal Article -
12
Semi-supervised online structure learning for composite event recognition
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… In order to adapt graph-cut minimisation to first order logic, we employ a suitable structural distance for measuring the distance between sets of logical atoms …”
Volltext
Journal Article -
13
Probabilistic and exact frequent subtree mining in graphs beyond forests
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)“… Motivated by the impressive predictive power of simple patterns, we consider the problem of mining frequent subtrees in arbitrary graphs. Although the …”
Volltext
Journal Article -
14
Guest editors’ note
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.07.2019Veröffentlicht in Machine learning (01.07.2019)Volltext
Journal Article