Suchergebnisse - Sparse autoencoder - stacked contractive autoencoder

Andere Suchmöglichkeiten:

  • Treffer 1 - 14 von 14
Treffer weiter einschränken
  1. 1

    Network intrusion detection based on Contractive Sparse Stacked Denoising Autoencoder von Lu, Jizhao, Meng, Huiping, Li, Wencui, Liu, Yue, Guo, Yihao, Yang, Yang

    ISSN: 2155-5052
    Veröffentlicht: IEEE 04.08.2021
    “… identify and classify network intrusion data, this paper proposes a Contractive Sparse Stack Denoising Autoencoder(CSSDAE …”
    Volltext
    Tagungsbericht
  2. 2

    Hybrid Network Intrusion Detection with Stacked Sparse Contractive Autoencoders and Attention-based Bidirectional LSTM von Bi, Jing, Guan, Ziyue, Yuan, Haitao

    ISSN: 2577-1655
    Veröffentlicht: IEEE 09.10.2022
    “… SABD integrates Stacked sparse contractive autoencoders, Attention-based Bidirectional long-term and short-term memory (LSTM …”
    Volltext
    Tagungsbericht
  3. 3

    Improved network intrusion classification with attention-assisted bidirectional LSTM and optimized sparse contractive autoencoders von Bi, Jing, Guan, Ziyue, Yuan, Haitao, Zhang, Jia

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 15.06.2024
    Veröffentlicht in Expert systems with applications (15.06.2024)
    “… SABD integrates Stacked sparse contractive autoencoders (SSCA), Attention-based Bidirectional long-term and short-term memory (LSTM …”
    Volltext
    Journal Article
  4. 4

    Enhanced fault detection in digital VLSI circuits using convolutional autoencoders von Savalam, Chandrasekhar, Medisetti, Sanjay, Korapati, Prasanti

    ISSN: 0167-9260
    Veröffentlicht: Elsevier B.V 01.03.2026
    Veröffentlicht in Integration (Amsterdam) (01.03.2026)
    “… A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information …”
    Volltext
    Journal Article
  5. 5

    An Overview of Unsupervised Deep Feature Representation for Text Categorization von Wang, Shiping, Cai, Jinyu, Lin, Qihao, Guo, Wenzhong

    ISSN: 2329-924X, 2373-7476
    Veröffentlicht: Piscataway IEEE 01.06.2019
    Veröffentlicht in IEEE transactions on computational social systems (01.06.2019)
    “… High-dimensional features are extensively accessible in machine learning and computer vision areas. How to learn an efficient feature representation for …”
    Volltext
    Journal Article
  6. 6

    Deep-Learning-Enabled Security Issues in the Internet of Things von Lv, Zhihan, Qiao, Liang, Li, Jinhua, Song, Houbing

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.06.2021
    Veröffentlicht in IEEE internet of things journal (15.06.2021)
    “… ), stacked contractive autoencoder (SCAE), stacked sparse autoencoder (SSAE), deep belief network (DBN …”
    Volltext
    Journal Article
  7. 7

    Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation von Vaiyapuri, Thavavel, Binbusayyis, Adel

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 07.12.2020
    Veröffentlicht in PeerJ. Computer science (07.12.2020)
    “… Intuitively, unsupervised deep learning approaches has received gaining momentum. Specifically, the advances in deep learning has endowed autoencoder (AE …”
    Volltext
    Journal Article
  8. 8

    Sparsely connected autoencoder von Gupta, Kavya, Majumdar, Angshul

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2016
    “… For classification we have compared against stacked autneencoders, contractive autoencoders, deep belief network, sparse deep neural network and optimal brain damage neural network …”
    Volltext
    Tagungsbericht
  9. 9

    An Intelligent Fault Diagnosis Method of Multi-Scale Deep Feature Fusion Based on Information Entropy von Shang, Zhiwu, Li, Wanxiang, Gao, Maosheng, Liu, Xia, Yu, Yan

    ISSN: 1000-9345, 2192-8258
    Veröffentlicht: Singapore Springer Singapore 01.12.2021
    Veröffentlicht in Chinese journal of mechanical engineering (01.12.2021)
    “… First, a normal autoencoder, denoising autoencoder, sparse autoencoder, and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure …”
    Volltext
    Journal Article
  10. 10

    Blockchain and Deep Learning Empowered Secure Data Sharing Framework for Softwarized UAVs von Kumar, Prabhat, Kumar, Randhir, Kumar, Abhinav, Franklin, A. Antony, Jolfaei, Alireza

    ISSN: 2694-2941
    Veröffentlicht: IEEE 16.05.2022
    “… Softwarized Unmanned Aerial Vehicles (UAVs) use network programmability concept of Software-Defined Network (SDN) to separate the hardware control layer from …”
    Volltext
    Tagungsbericht
  11. 11

    Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning von Singhal, Vanika, Majumdar, Angshul

    ISSN: 1370-4621, 1573-773X
    Veröffentlicht: New York Springer US 01.06.2018
    Veröffentlicht in Neural processing letters (01.06.2018)
    “… The concept of deep dictionary learning (DDL) has been recently proposed. Unlike shallow dictionary learning which learns single level of dictionary to …”
    Volltext
    Journal Article
  12. 12

    An Adaptive Service Classification Method Based on Stacked Hybrid Auto-Encoder von Li, Jing, Zhang, Zhi, Zhang, Tiankui

    Veröffentlicht: IEEE 11.08.2022
    “… In this paper, we investigate the problem of communication services classification and propose an adaptive service classification method which is based on stacked hybrid autoencoder (SHAE …”
    Volltext
    Tagungsbericht
  13. 13

    A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis von Chen, Xihui, Ji, Aimin, Cheng, Gang

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 27.11.2019
    Veröffentlicht in Energies (Basel) (27.11.2019)
    “… In this paper, a novel deep feature learning method based on the fused-stacked autoencoders (AEs) for planetary gear fault diagnosis was proposed …”
    Volltext
    Journal Article
  14. 14

    Majorization Minimization Technique for Optimally Solving Deep Dictionary Learning von Singhal, Vanika, Majumdar, Angshul

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.12.2019
    Veröffentlicht in arXiv.org (11.12.2019)
    “… The concept of deep dictionary learning has been recently proposed. Unlike shallow dictionary learning which learns single level of dictionary to represent the …”
    Volltext
    Paper