Suchergebnisse - Sparse Approximate Variational Autoencoder
-
1
Sparse-Coding Variational Autoencoders
ISSN: 1530-888X, 1530-888XVeröffentlicht: United States 19.11.2024Veröffentlicht in Neural computation (19.11.2024)“… ) fitting relied on approximate inference methods that ignored uncertainty. Although subsequent work has developed several methods to overcome these obstacles, we propose a novel solution inspired by the variational autoencoder (VAE) framework …”
Weitere Angaben
Journal Article -
2
Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder
ISSN: 2072-4292, 2072-4292Veröffentlicht: Basel MDPI AG 01.08.2022Veröffentlicht in Remote sensing (Basel, Switzerland) (01.08.2022)“… −time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR …”
Volltext
Journal Article -
3
A High-Generalization Variational Denoising Autoencoder for Micronewton Thrust Signal Noise Removal and Step Reconstruction
ISSN: 0018-9456, 1557-9662Veröffentlicht: New York IEEE 2025Veröffentlicht in IEEE transactions on instrumentation and measurement (2025)“… In this study, we have developed a novel generative denoising method, named variational denoising autoencoder (VDAE …”
Volltext
Journal Article -
4
Leveraging Cross Feedback of User and Item Embeddings with Attention for Variational Autoencoder based Collaborative Filtering
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.08.2022Veröffentlicht in arXiv.org (22.08.2022)“… Variational autoencoders (VAE) can address this issue by capturing complex mappings between the posterior parameters and the data …”
Volltext
Paper -
5
Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.10.2024Veröffentlicht in arXiv.org (13.10.2024)“… Although existing variational graph autoencoders (VGAEs) have been widely used for modeling and generating graph-structured data, most of them …”
Volltext
Paper -
6
A semi-supervised temporal modeling strategy integrating VAE and Wasserstein GAN under sparse sampling constraints
ISSN: 0959-1524Veröffentlicht: Elsevier Ltd 01.08.2025Veröffentlicht in Journal of process control (01.08.2025)“… To address this issue, a semi-supervised modeling strategy based on Variational Autoencoder (VAE …”
Volltext
Journal Article -
7
Application of Deep Generative Models for Anomaly Detection in Complex Financial Transactions
Veröffentlicht: IEEE 25.04.2025Veröffentlicht in 2025 4th International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID) (25.04.2025)“… By combining Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE), the algorithm is designed to detect abnormal behaviors in financial transactions …”
Volltext
Tagungsbericht -
8
A Comparative Analysis of Data Synthesis Techniques to Improve Classification Accuracy of Raman Spectroscopy Data
ISSN: 1549-960X, 1549-960XVeröffentlicht: United States 08.04.2024Veröffentlicht in Journal of chemical information and modeling (08.04.2024)“… Open-source data are difficult to obtain and often sparse; furthermore, the collecting and curating of new spectra require expertise and resources …”
Weitere Angaben
Journal Article -
9
Machine learning : a Bayesian and optimization perspective
ISBN: 9780128188033, 0128188030Veröffentlicht: London Academic Press 2020“… /Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models …”
Volltext
E-Book Buch -
10
Making Model Aware: Pattern Recognition and Analysis in Environmental and Healthcare Data With Machine Learning Models
ISBN: 9798302168887Veröffentlicht: ProQuest Dissertations & Theses 01.01.2024“… Discovering intrinsic patterns in environmental and healthcare data is often very helpful for analyzing correlations and causations among different variables …”
Volltext
Dissertation -
11
Inferential Gans and Deep Feature Selection with Applications
ISBN: 9798379823917Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020“… In unsupervised learning, variational autoencoders (VAEs) and generative adverarial networks (GANs) are two most popular and successful generative models …”
Volltext
Dissertation -
12
One-Bit Compressed Sensing in the Presence of Noise
ISBN: 9798535511313Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021“… ) for signal reconstruction and parameter estimation. We first consider the problem of joint sparse support estimation with one-bit measurements in a distributed setting …”
Volltext
Dissertation -
13
Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and Generative Modelling
ISBN: 9781392717806, 1392717809Veröffentlicht: ProQuest Dissertations & Theses 01.01.2019“… Machine learning is the embodiment of an unapologetically data-driven philosophy that has increasingly become one of the most important drivers of progress in …”
Volltext
Dissertation -
14
A Non-negative VAE:the Generalized Gamma Belief Network
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.08.2024Veröffentlicht in arXiv.org (15.08.2024)“… Its notable capability to acquire interpretable latent factors is partially attributed to sparse and non-negative gamma-distributed latent variables …”
Volltext
Paper -
15
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.04.2022Veröffentlicht in arXiv.org (23.04.2022)“… Initial work on variational autoencoders assumed independent latent variables with simple distributions …”
Volltext
Paper

