Suchergebnisse - Sparse Approximate Variational Autoencoder

  • Treffer 1 - 15 von 15
Treffer weiter einschränken
  1. 1

    Sparse-Coding Variational Autoencoders von Geadah, Victor, Barello, Gabriel, Greenidge, Daniel, Charles, Adam S, Pillow, Jonathan W

    ISSN: 1530-888X, 1530-888X
    Veröffentlicht: United States 19.11.2024
    Veröffentlicht in Neural computation (19.11.2024)
    “… ) fitting relied on approximate inference methods that ignored uncertainty. Although subsequent work has developed several methods to overcome these obstacles, we propose a novel solution inspired by the variational autoencoder (VAE) framework …”
    Weitere Angaben
    Journal Article
  2. 2

    Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder von Zhang, Chenxi, Zhao, Huiliang, Chen, Wenchao, Chen, Bo, Wang, Penghui, Jia, Changrui, Liu, Hongwei

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.08.2022
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.08.2022)
    “… −time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR …”
    Volltext
    Journal Article
  3. 3

    A High-Generalization Variational Denoising Autoencoder for Micronewton Thrust Signal Noise Removal and Step Reconstruction von Chen, Xingyu, Zhao, Liye, Xu, Jiawen, Liu, Zhikang, Dai, Zhuoping, Xu, Luxiang, Guo, Ning, Zhang, Hong

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2025
    “… In this study, we have developed a novel generative denoising method, named variational denoising autoencoder (VDAE …”
    Volltext
    Journal Article
  4. 4

    Leveraging Cross Feedback of User and Item Embeddings with Attention for Variational Autoencoder based Collaborative Filtering von Yuan, Jin, Zhao, He, Liu, Ming, Zhu, Ye, Du, Lan, Gao, Longxiang, Zhang, He, Li, Yunfeng

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.08.2022
    Veröffentlicht in arXiv.org (22.08.2022)
    “… Variational autoencoders (VAE) can address this issue by capturing complex mappings between the posterior parameters and the data …”
    Volltext
    Paper
  5. 5

    Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks von Wang, Chaojie, Liu, Xinyang, Wang, Dongsheng, Zhang, Hao, Chen, Bo, Zhou, Mingyuan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.10.2024
    Veröffentlicht in arXiv.org (13.10.2024)
    “… Although existing variational graph autoencoders (VGAEs) have been widely used for modeling and generating graph-structured data, most of them …”
    Volltext
    Paper
  6. 6

    A semi-supervised temporal modeling strategy integrating VAE and Wasserstein GAN under sparse sampling constraints von Hu, Yujie, Xie, Changrui, Chen, Xi

    ISSN: 0959-1524
    Veröffentlicht: Elsevier Ltd 01.08.2025
    Veröffentlicht in Journal of process control (01.08.2025)
    “… To address this issue, a semi-supervised modeling strategy based on Variational Autoencoder (VAE …”
    Volltext
    Journal Article
  7. 7

    Application of Deep Generative Models for Anomaly Detection in Complex Financial Transactions von Tang, Tengda, Yao, Jianhua, Wang, Yixian, Sha, Qiuwu, Feng, Hanrui, Xu, Zhen

    Veröffentlicht: IEEE 25.04.2025
    “… By combining Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE), the algorithm is designed to detect abnormal behaviors in financial transactions …”
    Volltext
    Tagungsbericht
  8. 8

    A Comparative Analysis of Data Synthesis Techniques to Improve Classification Accuracy of Raman Spectroscopy Data von Flanagan, Aaron R, Glavin, Frank G

    ISSN: 1549-960X, 1549-960X
    Veröffentlicht: United States 08.04.2024
    Veröffentlicht in Journal of chemical information and modeling (08.04.2024)
    “… Open-source data are difficult to obtain and often sparse; furthermore, the collecting and curating of new spectra require expertise and resources …”
    Weitere Angaben
    Journal Article
  9. 9

    Machine learning : a Bayesian and optimization perspective von Theodoridis, Sergios

    ISBN: 9780128188033, 0128188030
    Veröffentlicht: London Academic Press 2020
    “… /Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models …”
    Volltext
    E-Book Buch
  10. 10

    Making Model Aware: Pattern Recognition and Analysis in Environmental and Healthcare Data With Machine Learning Models von Jiang, Ziyang

    ISBN: 9798302168887
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2024
    “… Discovering intrinsic patterns in environmental and healthcare data is often very helpful for analyzing correlations and causations among different variables …”
    Volltext
    Dissertation
  11. 11

    Inferential Gans and Deep Feature Selection with Applications von Chen, Yao

    ISBN: 9798379823917
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020
    “… In unsupervised learning, variational autoencoders (VAEs) and generative adverarial networks (GANs) are two most popular and successful generative models …”
    Volltext
    Dissertation
  12. 12

    One-Bit Compressed Sensing in the Presence of Noise von Kafle, Swatantra

    ISBN: 9798535511313
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… ) for signal reconstruction and parameter estimation. We first consider the problem of joint sparse support estimation with one-bit measurements in a distributed setting …”
    Volltext
    Dissertation
  13. 13

    Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and Generative Modelling von Li, Ke

    ISBN: 9781392717806, 1392717809
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2019
    “… Machine learning is the embodiment of an unapologetically data-driven philosophy that has increasingly become one of the most important drivers of progress in …”
    Volltext
    Dissertation
  14. 14

    A Non-negative VAE:the Generalized Gamma Belief Network von Duan, Zhibin, Wen, Tiansheng, Wang, Muyao, Chen, Bo, Zhou, Mingyuan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.08.2024
    Veröffentlicht in arXiv.org (15.08.2024)
    “… Its notable capability to acquire interpretable latent factors is partially attributed to sparse and non-negative gamma-distributed latent variables …”
    Volltext
    Paper
  15. 15

    SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks von Mouton, Jacobie, Kroon, Steve

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.04.2022
    Veröffentlicht in arXiv.org (23.04.2022)
    “… Initial work on variational autoencoders assumed independent latent variables with simple distributions …”
    Volltext
    Paper