Suchergebnisse - Softmax and Sparse Autoencoder

  1. 1

    A Sparse Autoencoder and Softmax Regression Based Diagnosis Method for the Attachment on the Blades of Marine Current Turbine von Zheng, Yilai, Wang, Tianzhen, Xin, Bin, Xie, Tao, Wang, Yide

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI 17.02.2019
    Veröffentlicht in Sensors (Basel, Switzerland) (17.02.2019)
    “… This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR …”
    Volltext
    Journal Article
  2. 2

    Breast Cancer Diagnosis Using Feature Ensemble Learning Based on Stacked Sparse Autoencoders and Softmax Regression von Kadam, Vinod Jagannath, Jadhav, Shivajirao Manikrao, Vijayakumar, K.

    ISSN: 0148-5598, 1573-689X, 1573-689X
    Veröffentlicht: New York Springer US 01.08.2019
    Veröffentlicht in Journal of medical systems (01.08.2019)
    “… Many researchers proposed numerous methods for early prediction of this Cancer. In this paper, we proposed feature ensemble learning based on Sparse Autoencoders …”
    Volltext
    Journal Article
  3. 3

    Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier von Liu, Jinping, Xu, Longcheng, Xie, Yongfang, Ma, Tianyu, Wang, Jie, Tang, Zhaohui, Gui, Weihua, Yin, Huazhan, Jahanshahi, Hadi

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.01.2023
    Veröffentlicht in IEEE transactions on cybernetics (01.01.2023)
    “… This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE …”
    Volltext
    Journal Article
  4. 4

    Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction von Chen, Luefeng, Zhou, Mengtian, Su, Wanjuan, Wu, Min, She, Jinhua, Hirota, Kaoru

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.02.2018
    Veröffentlicht in Information sciences (01.02.2018)
    “… Meanwhile, Softmax regression (SR) is used to classify expression feature. In this paper, Softmax regression-based deep sparse autoencoder network (SRDSAN …”
    Volltext
    Journal Article
  5. 5

    Materials Identification of Polarized Pulse Laser Detection based on Sparse Autoencoder and Softmax Classifier Framework von Xu, Xiaobin, Wu, Jialin, Wang, Jiali, Qu, Qinyang, Tan, Zhiying, Luo, Minzhou

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2022
    “… In this paper, materials identification of polarized pulsed laser detection system is conducted by sparse autoencoder (SAE …”
    Volltext
    Journal Article
  6. 6

    Network Intrusion Detection System Using Deep Learning Method with KDD Cup'99 Dataset von Tanimu, Jesse Jeremiah, Hamada, Mohamed, Robert, Patience, Mahendran, Anand

    ISSN: 2771-3075
    Veröffentlicht: IEEE 01.12.2022
    “… This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works …”
    Volltext
    Tagungsbericht
  7. 7

    Integrating Enhanced Sparse Autoencoder-Based Artificial Neural Network Technique and Softmax Regression for Medical Diagnosis von Ebiaredoh-Mienye, Sarah A., Esenogho, Ebenezer, Swart, Theo G.

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.11.2020
    Veröffentlicht in Electronics (Basel) (01.11.2020)
    “… an enhanced sparse autoencoder (SAE) and Softmax regression, respectively. In the SAE network, sparsity is achieved by penalizing the weights of the network …”
    Volltext
    Journal Article
  8. 8

    Deep network approach with stacked sparse autoencoders in detection of DDoS attacks on SDN-based VANET von Polat, Huseyin, Turkoglu, Muammer, Polat, Onur

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: The Institution of Engineering and Technology 01.12.2020
    Veröffentlicht in IET communications (01.12.2020)
    “… In this study, the stacked sparse autoencoder (SSAE) + Softmax classifier deep network model is proposed to detect DDoS attacks targeting SDN-based VANETs …”
    Volltext
    Journal Article
  9. 9

    Blade imbalanced fault diagnosis for marine current turbine based on sparse autoencoder and softmax regression von Wen, Pingping, Wang, Tianzhen, Xin, Bin, Tang, Tianhao, Wang, Yide

    Veröffentlicht: IEEE 01.05.2018
    “… A diagnosis method combining the modified sparse autoencoder (SA) and softmax regression (SR) is applied to process images and detect the imbalanced fault on the blade of MCT …”
    Volltext
    Tagungsbericht
  10. 10

    Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network von Aslam, Muhammad Aqeel, Xue, Cuili, Chen, Yunsheng, Zhang, Amin, Liu, Manhua, Wang, Kan, Cui, Daxiang

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 17.02.2021
    Veröffentlicht in Scientific reports (17.02.2021)
    “… In this study, we proposed a new method for feature extraction using a stacked sparse autoencoder to extract the discriminative features from the unlabeled data of breath samples …”
    Volltext
    Journal Article
  11. 11

    Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder von Mienye, Ibomoiye Domor, Sun, Yanxia

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.10.2021
    Veröffentlicht in Electronics (Basel) (01.10.2021)
    “… The network consists of multiple sparse autoencoders and a softmax classifier. Additionally, in deep learning models …”
    Volltext
    Journal Article
  12. 12

    Hyperspectral image classification using k-sparse denoising autoencoder and spectral–restricted spatial characteristics von Lan, Rushi, Li, Zeya, Liu, Zhenbing, Gu, Tianlong, Luo, Xiaonan

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.01.2019
    Veröffentlicht in Applied soft computing (01.01.2019)
    “… This paper proposes a novel k-sparse denoising autoencoder (KDAE) with a softmax classifier for HSI classification …”
    Volltext
    Journal Article
  13. 13

    Deep Neural Network for Automatic Classification of Pathological Voice Signals von Chen, Lili, Chen, Junjiang

    ISSN: 0892-1997, 1873-4588, 1873-4588
    Veröffentlicht: United States Elsevier Inc 01.03.2022
    Veröffentlicht in Journal of voice (01.03.2022)
    “… The constructed DNN consists a two-layer stacked sparse autoencoders network and a softmax layer …”
    Volltext
    Journal Article
  14. 14

    Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder von Abraham, Bejoy, Nair, Madhu S.

    ISSN: 0895-6111, 1879-0771, 1879-0771
    Veröffentlicht: United States Elsevier Ltd 01.11.2018
    Veröffentlicht in Computerized medical imaging and graphics (01.11.2018)
    “… •Achieved moderate success in classification of 4 grade groups.•The method uses stacked sparse autoencoders (SSAE …”
    Volltext
    Journal Article
  15. 15

    Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder von Jia, Wenjuan, Yang, Ming, Wang, Shui-Hua

    ISSN: 0148-5598, 1573-689X, 1573-689X
    Veröffentlicht: New York Springer US 01.10.2017
    Veröffentlicht in Journal of medical systems (01.10.2017)
    “… In the stage of deep autoencoder, we use stacked sparse autoencoder to generate visual features, and softmax layer to classify the different brain images into three categories of hearing loss …”
    Volltext
    Journal Article
  16. 16

    Identification of Partial Discharge Defects Based on Deep Learning Method von Duan, Lian, Hu, Jun, Zhao, Gen, Chen, Kunjin, He, Jinliang, Wang, Shan X.

    ISSN: 0885-8977, 1937-4208
    Veröffentlicht: New York IEEE 01.08.2019
    Veröffentlicht in IEEE transactions on power delivery (01.08.2019)
    “… Two basic parts of this DL framework are sparse autoencoder layer and softmax layer, the former extracting …”
    Volltext
    Journal Article
  17. 17

    Automatic modulation classification of digital modulation signals with stacked autoencoders von Ali, Afan, Yangyu, Fan, Liu, Shu

    ISSN: 1051-2004, 1095-4333
    Veröffentlicht: Elsevier Inc 01.12.2017
    Veröffentlicht in Digital signal processing (01.12.2017)
    “… Modulation identification of the transmitted signals remain a challenging area in modern intelligent communication systems like cognitive radios. The …”
    Volltext
    Journal Article
  18. 18

    Fault Detection and Identification in an Acid Gas Removal Unit Using Deep Autoencoders von Kathlyn, Tan Kaiyun, Zabiri, Haslinda, Aldrich, Chris, Liu, Xiu, Mohd Amiruddin, Ahmad Azharuddin Azhari

    ISSN: 2470-1343, 2470-1343
    Veröffentlicht: United States American Chemical Society 06.06.2023
    Veröffentlicht in ACS omega (06.06.2023)
    “… ; however, they are the least studied in the open literature. Hence, in this paper, shallow and deep sparse autoencoders with SoftMax layers are investigated to facilitate early detection of these three faults before any significant financial loss …”
    Volltext
    Journal Article
  19. 19

    Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology von Jun Xu, Lei Xiang, Renlong Hang, Jianzhong Wu

    ISSN: 1945-7928
    Veröffentlicht: IEEE 01.04.2014
    “… Softmax, and single layer Sparse Autoencoder (SAE)+Softmax in classifying the nuclei and non-nuclei patches extracted from breast cancer histopathology. The SSAE …”
    Volltext
    Tagungsbericht
  20. 20

    Radar HRRP target recognition based on stacked denosing sparse autoencoder von Tai, Guangxing, Wang, Yanhua, Li, Yang, Hong, Wei

    ISSN: 2051-3305, 2051-3305
    Veröffentlicht: The Institution of Engineering and Technology 01.11.2019
    Veröffentlicht in Journal of engineering (Stevenage, England) (01.11.2019)
    “… An end-to-end radar high-resolution range profile recognition method is proposed based on stacked denosing sparse autoencoder which stacks several denosing sparse autoencoders and uses softmax as the classifier …”
    Volltext
    Journal Article