Suchergebnisse - Semi-supervised learning 3D medical image segmentation Class imbalance Data augmentation
-
1
Shape Transformation Driven by Active Contour for Class-Imbalanced Semi-Supervised Medical Image Segmentation
ISSN: 2156-1133Veröffentlicht: IEEE 03.12.2024Veröffentlicht in Proceedings (IEEE International Conference on Bioinformatics and Biomedicine) (03.12.2024)“… Annotating 3D medical images demands expert knowledge and is time-consuming. As a result, semi-supervised learning (SSL …”
Volltext
Tagungsbericht -
2
When CNN Meet with ViT: Towards Semi-Supervised Learning for Multi-Class Medical Image Semantic Segmentation
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 08.02.2024Veröffentlicht in arXiv.org (08.02.2024)“… Due to the lack of quality annotation in medical imaging community, semi-supervised learning methods are highly valued in image semantic segmentation tasks …”
Volltext
Paper -
3
Consistency learning with dynamic weighting and class-agnostic regularization for semi-supervised medical image segmentation
ISSN: 1746-8094, 1746-8108Veröffentlicht: Elsevier Ltd 01.04.2024Veröffentlicht in Biomedical signal processing and control (01.04.2024)“… Recently, significant progress has been made in consistency regularization-based semi-supervised medical image segmentation …”
Volltext
Journal Article -
4
Semi-Supervised Volumetric Medical Image Segmentation via Class Prototype Guided Distribution-Aligned Representation Learning
ISSN: 2379-190XVeröffentlicht: IEEE 14.04.2024Veröffentlicht in Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (14.04.2024)“… We present SemiCRL, a novel framework for volumetric medical image segmentation that formulates an innovative contrastive learning methodology in a semi-supervised learning setting …”
Volltext
Tagungsbericht -
5
Semi-Supervised Learning for Medical Image Segmentation
ISBN: 9798283474595Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Medical image segmentation is a fundamental step in many computer aided clinical applications, such as tumour detection and quantification, organ measurement and feature learning, etc …”
Volltext
Dissertation -
6
Entropy‐guided contrastive learning for semi‐supervised medical image segmentation
ISSN: 1751-9659, 1751-9667Veröffentlicht: Wiley 01.02.2024Veröffentlicht in IET image processing (01.02.2024)“… ‐consuming and difficult to obtain. As a result, semi‐supervised learning (SSL) has gained attention as it has the potential to alleviate this challenge by using not only limited labelled data but also a large amount of unlabelled data …”
Volltext
Journal Article -
7
Semi‐supervised medical image segmentation network based on mutual learning
ISSN: 0094-2405, 2473-4209, 2473-4209Veröffentlicht: United States 01.03.2025Veröffentlicht in Medical physics (Lancaster) (01.03.2025)“… Background Semi‐supervised learning provides an effective means to address the challenge of insufficient labeled data in medical image segmentation tasks …”
Volltext
Journal Article -
8
Multidimensional perturbed consistency learning for semi‐supervised medical image segmentation
ISSN: 0899-9457, 1098-1098Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.05.2024Veröffentlicht in International journal of imaging systems and technology (01.05.2024)“… ) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture …”
Volltext
Journal Article -
9
Dual Diversity and Pseudo‐Label Correction Learning for Semi‐Supervised Medical Image Segmentation
ISSN: 0899-9457, 1098-1098Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.09.2025Veröffentlicht in International journal of imaging systems and technology (01.09.2025)“… ABSTRACT Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large …”
Volltext
Journal Article -
10
Dual‐Region Consistency Learning With Contrastive Refinement for Semi‐Supervised Medical Image Segmentation
ISSN: 0899-9457, 1098-1098Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.05.2025Veröffentlicht in International journal of imaging systems and technology (01.05.2025)“… To address these issues, this paper proposes a novel semi‐supervised medical image segmentation framework named Dual …”
Volltext
Journal Article -
11
FUSION: Uncertainty‐Guided Federated Semi‐Supervised Learning for Medical Image Segmentation
ISSN: 1751-9659, 1751-9667Veröffentlicht: 01.01.2025Veröffentlicht in IET image processing (01.01.2025)“… Federated learning (FL) for medical image segmentation poses critical challenges, including non …”
Volltext
Journal Article -
12
Momentum Contrastive Voxel-wise Representation Learning for Semi-supervised Volumetric Medical Image Segmentation
Veröffentlicht: Germany 01.01.2022Veröffentlicht in Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention (01.01.2022)“… Contrastive learning (CL) aims to learn useful representation without relying on expert annotations in the context of medical image segmentation …”
Weitere Angaben
Journal Article -
13
Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
ISSN: 0957-4174, 1873-6793Veröffentlicht: Elsevier Ltd 15.05.2024Veröffentlicht in Expert systems with applications (15.05.2024)“… Semi-supervised segmentation (SSL) techniques make extensive use of unlabeled data to address the issue of the high acquisition cost of medically labeled data …”
Volltext
Journal Article -
14
Rectified Mixed-Label Learning for Semi-Supervised Medical Image Segmentation
ISSN: 1945-788XVeröffentlicht: IEEE 30.06.2025Veröffentlicht in Proceedings (IEEE International Conference on Multimedia and Expo) (30.06.2025)“… Semi-supervised medical image segmentation (SSMIS) has gained increasing attention due to its potential to alleviate the manual annotation burden …”
Volltext
Tagungsbericht -
15
EPL: Evidential Prototype Learning for Semi-supervised Medical Image Segmentation
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.04.2024Veröffentlicht in arXiv.org (09.04.2024)“… Although current semi-supervised medical segmentation methods can achieve decent performance, they are still affected by the uncertainty in unlabeled data and model predictions, and there is …”
Volltext
Paper -
16
Learning Semi-Supervised Medical Image Segmentation from Spatial Registration
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.09.2024Veröffentlicht in arXiv.org (16.09.2024)“… Semi-supervised medical image segmentation has shown promise in training models with limited labeled data and abundant unlabeled data …”
Volltext
Paper -
17
Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation
ISSN: 0278-0062, 1558-254X, 1558-254XVeröffentlicht: United States IEEE 01.05.2024Veröffentlicht in IEEE transactions on medical imaging (01.05.2024)“… Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions …”
Volltext
Journal Article -
18
Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.04.2024Veröffentlicht in arXiv.org (16.04.2024)“… Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance …”
Volltext
Paper -
19
Consistency and adversarial semi-supervised learning for medical image segmentation
ISSN: 0010-4825, 1879-0534, 1879-0534Veröffentlicht: United States Elsevier Ltd 01.07.2023Veröffentlicht in Computers in biology and medicine (01.07.2023)“… To settle above issue, in this paper, a novel semi-supervised medical image segmentation method is proposed, in which the adversarial training mechanism and the collaborative consistency learning …”
Volltext
Journal Article -
20
Mutual Evidential Deep Learning for Semi-supervised Medical Image Segmentation
ISSN: 2156-1133Veröffentlicht: IEEE 03.12.2024Veröffentlicht in Proceedings (IEEE International Conference on Bioinformatics and Biomedicine) (03.12.2024)“… Existing semi-supervised medical segmentation co-learning frameworks have realized that model performance can be diminished by the biases in model recognition caused by low-quality pseudo-labels …”
Volltext
Tagungsbericht

