Suchergebnisse - Robust backpropagation learning algorithm

  1. 1

    TAO-robust backpropagation learning algorithm von Pernía-Espinoza, Alpha V., Ordieres-Meré, Joaquín B., Martínez-de-Pisón, Francisco J., González-Marcos, Ana

    ISSN: 0893-6080, 1879-2782
    Veröffentlicht: Oxford Elsevier Ltd 01.03.2005
    Veröffentlicht in Neural networks (01.03.2005)
    “… ] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers …”
    Volltext
    Journal Article
  2. 2

    The annealing robust backpropagation (ARBP) learning algorithm von Chuang, C C, Su, S F, Hsiao, C C

    ISSN: 1045-9227
    Veröffentlicht: United States IEEE 01.09.2000
    Veröffentlicht in IEEE transactions on neural networks (01.09.2000)
    “… Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem …”
    Volltext
    Journal Article
  3. 3

    Neural networks with robust backpropagation learning algorithm von Walczak, B.

    ISSN: 0003-2670, 1873-4324
    Veröffentlicht: Amsterdam Elsevier B.V 1996
    Veröffentlicht in Analytica chimica acta (1996)
    “… A robust error suppressor function, which is independent of the underlying probability density function and convenient for computer programs, is proposed to robustify the backpropagation learning …”
    Volltext
    Journal Article
  4. 4

    A robust backpropagation learning algorithm for function approximation von Chen, D.S., Jain, R.C.

    ISSN: 1045-9227
    Veröffentlicht: United States IEEE 01.05.1994
    Veröffentlicht in IEEE transactions on neural networks (01.05.1994)
    “… In this paper we derive a robust BP learning algorithm that is resistant to the noise effects and is capable of rejecting gross errors during the approximation process …”
    Volltext
    Journal Article
  5. 5

    Robust optimization design method for structural reliability based on active-learning MPA-BP neural network von Dong, Zhao, Sheng, Ziqiang, Zhao, Yadong, Zhi, Pengpeng

    ISSN: 1757-9864, 1757-9872
    Veröffentlicht: Bingley Emerald Publishing Limited 21.03.2023
    Veröffentlicht in International journal of structural integrity (21.03.2023)
    “… redundancy in the design. In order to improve the accuracy and rationality of the design results, a robust design method for structural reliability based on an active-learning marine predator algorithm (MPA)–backpropagation (BP …”
    Volltext
    Journal Article
  6. 6

    Comparison of different backpropagation training algorithms using robust M-estimators performance functions von Abd Ellah, Ali R., Essai, Mohamed H., Yahya, Ahmed

    Veröffentlicht: IEEE 01.12.2015
    “… Many robust learning algorithms have been proposed so far to improve the performance of neural networks in the presence of outliers …”
    Volltext
    Tagungsbericht
  7. 7

    Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning von Chen, Chun‐Teh, Gu, Grace X.

    ISSN: 2198-3844, 2198-3844
    Veröffentlicht: Germany John Wiley & Sons, Inc 01.03.2020
    Veröffentlicht in Advanced science (01.03.2020)
    “… In recent years, machine learning (ML) techniques are seen to be promising tools to discover and design novel materials …”
    Volltext
    Journal Article
  8. 8

    Soft and hard computation methods for estimation of the effective thermal conductivity of sands von Rizvi, Zarghaam Haider, Zaidi, Husain Haider, Akhtar, Syed Jawad, Sattari, Amir Shorian, Wuttke, Frank

    ISSN: 0947-7411, 1432-1181
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
    Veröffentlicht in Heat and mass transfer (01.06.2020)
    “… Thermal properties of sand are of importance in numerous engineering and scientific applications ranging from energy storage and transportation infrastructures …”
    Volltext
    Journal Article
  9. 9

    Enhanced remaining useful life prediction of lithium-ion batteries using genetic algorithm-optimized backpropagation neural networks von Li, Xiang, Du, Haozhe, Wang, Tian, Bi, Jing, Zhang, Haiyan, Zhao, Shu, Yu, Haijun

    ISSN: 0378-7753
    Veröffentlicht: Elsevier B.V 01.10.2025
    Veröffentlicht in Journal of power sources (01.10.2025)
    “… This study proposes a genetic algorithm (GA)-optimized backpropagation (BP) neural network that eliminates the need for complex feature engineering and improves convergence robustness …”
    Volltext
    Journal Article
  10. 10

    Robust Neural Control of Discrete Time Uncertain Nonlinear Systems Using Sliding Mode Backpropagation Training Algorithm von Zaidi, Imen, Chtourou, Mohamed, Djemel, Mohamed

    ISSN: 2153-182X, 2153-1838
    Veröffentlicht: Beijing Springer Nature B.V 01.04.2019
    Veröffentlicht in Machine intelligence research (Print) (01.04.2019)
    “… In previous works, the neural models are trained classically by backpropagation (BP) algorithm. In this work, the sliding mode-backpropagation …”
    Volltext
    Journal Article
  11. 11

    Quantitative Analysis of Major Metals in Agricultural Biochar Using Laser-Induced Breakdown Spectroscopy with an Adaboost Artificial Neural Network Algorithm von Duan, Hongwei, Han, Lujia, Huang, Guangqun

    ISSN: 1420-3049, 1420-3049
    Veröffentlicht: Switzerland MDPI AG 18.10.2019
    Veröffentlicht in Molecules (Basel, Switzerland) (18.10.2019)
    “… To promote the green development of agriculture by returning biochar to farmland, it is of great significance to simultaneously detect heavy and nutritional …”
    Volltext
    Journal Article
  12. 12

    Enhanced backpropagation neural network accuracy through an improved genetic algorithm for tourist flow prediction in an ecological village von Chen, Xiaolong, Wong, Cora Un In, Zhang, Hongfeng, Song, Zhengchun

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 15.10.2025
    Veröffentlicht in Scientific reports (15.10.2025)
    “… ) and Genetic Algorithm-Backpropagation Neural Network (GABP-NN). However, those models cannot well address the challenge of nonlinear complexity of tourists …”
    Volltext
    Journal Article
  13. 13

    A robust firefly algorithm with backpropagation neural networks for solving hydrogeneration prediction von Hammid, Ali Thaeer, Sulaiman, Mohd Herwan Bin, Awad, Omar I.

    ISSN: 0948-7921, 1432-0487
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
    Veröffentlicht in Electrical engineering (01.12.2018)
    “… The applications of backpropagation neural network (BPNN) are very various and saturated. The linear threshold part of the BPNN produces rapid learning with bounded abilities, also the procedure of BPNN causes the slow speed of training …”
    Volltext
    Journal Article
  14. 14

    A New Correntropy-Based Conjugate Gradient Backpropagation Algorithm for Improving Training in Neural Networks von Heravi, Ahmad Reza, Abed Hodtani, Ghosheh

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.12.2018
    “… In this paper, we suggest a group of novel robust information theoretic backpropagation (BP) methods, as correntropy-based conjugate gradient BP (CCG-BP …”
    Volltext
    Journal Article
  15. 15

    Backpropagation Algorithm and its Hardware Implementations: A Review von Kuninti, Shivani, Rooban, S

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.02.2021
    Veröffentlicht in Journal of physics. Conference series (01.02.2021)
    “… The combination of hardware and software modules help to build systems in a robust manner. This paper focuses mainly on back propagation algorithm and its different hardware implementation using FPGA, ASIC, Memristor and Microcontroller …”
    Volltext
    Journal Article
  16. 16

    Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance von Xiao, Fei, Lu, Tianguang, Wu, Mingli, Ai, Qian

    ISSN: 1751-8687, 1751-8695
    Veröffentlicht: The Institution of Engineering and Technology 17.01.2020
    Veröffentlicht in IET generation, transmission & distribution (17.01.2020)
    “… The proposed PQ detection algorithm is robust even without a detection threshold and independent of the sampling frequency of PQ recording …”
    Volltext
    Journal Article
  17. 17

    Learning in the machine: Recirculation is random backpropagation von Baldi, P., Sadowski, P.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.12.2018
    Veröffentlicht in Neural networks (01.12.2018)
    “… Learning in physical neural systems must rely on learning rules that are local in both space and time …”
    Volltext
    Journal Article
  18. 18

    Integrating convolutional layers and biformer network with forward-forward and backpropagation training von Kianfar, Ali, Razzaghi, Parvin, Asgari, Zahra

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 28.02.2025
    Veröffentlicht in Scientific reports (28.02.2025)
    “… Our methodology combines convolutional neural networks (CNNs) with a BiFormer attention mechanism, employing both the forward-forward algorithm and backpropagation …”
    Volltext
    Journal Article
  19. 19

    A comparison of quaternion neural network backpropagation algorithms von Bill, Jeremiah, Cox, Bruce A., Champagne, Lance

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 01.12.2023
    Veröffentlicht in Expert systems with applications (01.12.2023)
    “… This work aims to unify existing research by evaluating four distinct QNN backpropagation algorithms, including the novel GHR-calculus backpropagation algorithm, and providing concise, scalable …”
    Volltext
    Journal Article
  20. 20

    Data Value Assessment in Digital Economy Based on Backpropagation Neural Network Optimized by Genetic Algorithm von Qin, Xujiang, He, Qi, Zhang, Xin, Yang, Xiang

    ISSN: 2073-8994, 2073-8994
    Veröffentlicht: Basel MDPI AG 14.05.2025
    Veröffentlicht in Symmetry (Basel) (14.05.2025)
    “… This growing importance necessitates accurate and robust valuation methods. Data valuation poses core modeling challenges due to its nonlinear nature and the instability …”
    Volltext
    Journal Article