Suchergebnisse - Relevance factor variational autoencoder

  • Treffer 1 - 16 von 16
Treffer weiter einschränken
  1. 1

    Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias von Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 29.07.2024
    Veröffentlicht in Scientific reports (29.07.2024)
    “… The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and …”
    Volltext
    Journal Article
  2. 2

    Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands von Bandyopadhyay, Sabyasachi, Wittmayer, Jack, Libon, David J., Tighe, Patrick, Price, Catherine, Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 06.05.2023
    Veröffentlicht in Scientific reports (06.05.2023)
    “… In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors …”
    Volltext
    Journal Article
  3. 3

    A vision transformer approach for fully automated and scalable dementia screening using clock drawing test images von Bone, Michael B., Freedman, Morris, Black, Sandra E., Felsky, Daniel, Kumar, Sanjeev, Pugh, Bradley, Strother, Stephen C., Tang‐Wai, David F., Tartaglia, Maria Carmela, Buchsbaum, Bradley R.

    ISSN: 2352-8729, 2352-8729
    Veröffentlicht: United States Wiley 01.07.2025
    “… ‐scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder …”
    Volltext
    Journal Article
  4. 4

    ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders von Saha, Surojit, Joshi, Sarang, Whitaker, Ross

    ISSN: 2642-9381
    Veröffentlicht: IEEE 26.02.2025
    “… The variational autoencoder (VAE) [19], [41] is a popular, deep, latent-variable model (DLVM …”
    Volltext
    Tagungsbericht
  5. 5

    Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle von Asano, Shotaro, Asaoka, Ryo, Yamashita, Takehiro, Aoki, Shuichiro, Matsuura, Masato, Fujino, Yuri, Murata, Hiroshi, Nakakura, Shunsuke, Nakao, Yoshitaka, Kiuchi, Yoshiaki

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 20.04.2020
    Veröffentlicht in Scientific reports (20.04.2020)
    “… ), using a generative deep learning method of variational autoencoder (VAE). Fifty-four eyes of 52 subjects were enrolled …”
    Volltext
    Journal Article
  6. 6

    FaIRClocks: Fair and Interpretable Representation of the Clock Drawing Test for mitigating classifier bias against lower educational groups von Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J, Price, Catherine C, Rashidi, Parisa

    ISSN: 2693-5015, 2693-5015
    Veröffentlicht: United States 09.10.2023
    Veröffentlicht in Research square (09.10.2023)
    “… We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE …”
    Weitere Angaben
    Journal Article
  7. 7

    GF-LRP: A Method for Explaining Predictions Made by Variational Graph Auto-Encoders von Rodrigo-Bonet, Esther, Deligiannis, Nikos

    ISSN: 2471-285X, 2471-285X
    Veröffentlicht: Piscataway IEEE 01.02.2025
    “… Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs …”
    Volltext
    Journal Article
  8. 8

    Deep learning for the harmonization of structural MRI scans: a survey von Abbasi, Soolmaz, Lan, Haoyu, Choupan, Jeiran, Sheikh-Bahaei, Nasim, Pandey, Gaurav, Varghese, Bino

    ISSN: 1475-925X, 1475-925X
    Veröffentlicht: London BioMed Central 31.08.2024
    Veröffentlicht in Biomedical engineering online (31.08.2024)
    “… These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent …”
    Volltext
    Journal Article
  9. 9

    Enhancing Multi-Turn Dialogue Generation with MoE-Based Multi-Latent Variable Fusion von Cui, Zishun, Sun, Xiao

    Veröffentlicht: IEEE 11.04.2025
    “… To address the one-to-many mapping problem caused by conversational uncertainty, we propose a novel framework integrating Variational Autoencoder (VAE …”
    Volltext
    Tagungsbericht
  10. 10

    Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach von Sheng, Xia, Gui, Yike, Yu, Jie, Wang, Yitian, Li, Zhenghao, Zhang, Xiaoya, Xing, Yuxin, Wang, Yuqing, Li, Zhaojun, Zheng, Mingyue, Yang, Liquan, Li, Xutong

    ISSN: 2095-1779, 2214-0883, 2214-0883
    Veröffentlicht: China Elsevier B.V 01.08.2025
    Veröffentlicht in Journal of pharmaceutical analysis (01.08.2025)
    “… Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization …”
    Volltext
    Journal Article
  11. 11

    Period-aggregated transformer for learning latent seasonalities in long-horizon financial time series von Tang, Zhenyang, Huang, Jinshui, Rinprasertmeechai, Denisa

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 08.08.2024
    Veröffentlicht in PloS one (08.08.2024)
    “… ). The model integrates a variational autoencoder (VAE) with a period-to-period attention mechanism for multistep prediction in the financial …”
    Volltext
    Journal Article
  12. 12

    Survey on sampling conditioned brain images and imaging measures with generative models von Cheong, Sehyoung, Lee, Hoseok, Kim, Won Hwa

    ISSN: 2093-9868, 2093-985X, 2093-985X
    Veröffentlicht: Korea The Korean Society of Medical and Biological Engineering 01.09.2025
    Veröffentlicht in Biomedical engineering letters (01.09.2025)
    “… These models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models, leverage deep learning to generate high-quality brain images while maintaining biological and clinical relevance …”
    Volltext
    Journal Article
  13. 13

    Uncovering Population PK Covariates from VAE-Generated Latent Spaces von Perazzolo, Diego, Castellani, Chiara, Grisan, Enrico

    ISSN: 2694-0604
    Veröffentlicht: United States 01.07.2025
    “… Traditional methods may fail to capture hidden patterns within the data. In this study, we propose a data-driven, model-free framework that integrates Variational Autoencoders (VAEs …”
    Weitere Angaben
    Journal Article
  14. 14

    Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS von Marghi, Yeganeh, Gala, Rohan, Baftizadeh, Fahimeh, Sümbül, Uygar

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: United States Cold Spring Harbor Laboratory Press 02.07.2024
    Veröffentlicht in bioRxiv (02.07.2024)
    “… Reproducible definition and identification of cell types is essential to enable investigations into their biological function, and understanding their relevance in the context of development, disease and evolution …”
    Volltext
    Journal Article Paper
  15. 15

    Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection von Challu, Cristian, Jiang, Peihong, Ying Nian Wu, Callot, Laurent

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.02.2022
    Veröffentlicht in arXiv.org (25.02.2022)
    “… Among reconstruction-based models, most previous work has focused on Variational Autoencoders and Generative Adversarial Networks …”
    Volltext
    Paper
  16. 16

    Latent feature disentanglement for 3D meshes von Levinson, Jake, Sud, Avneesh, Makadia, Ameesh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.06.2019
    Veröffentlicht in arXiv.org (07.06.2019)
    “… In this paper we build upon recently introduced 3D mesh-convolutional Variational AutoEncoders which have shown great promise for learning rich representations of deformable 3D shapes …”
    Volltext
    Paper