Suchergebnisse - Reduced Convolutional Autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Non-linear Manifold Reduced-Order Models with Convolutional Autoencoders and Reduced Over-Collocation Method von Romor, Francesco, Stabile, Giovanni, Rozza, Gianluigi

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.03.2023
    Veröffentlicht in Journal of scientific computing (01.03.2023)
    “… reduced-order models based on linear subspace approximations. Among the possible solutions, there are purely data-driven methods that leverage autoencoders …”
    Volltext
    Journal Article
  2. 2

    Non‐intrusive reduced‐order modeling using convolutional autoencoders von Halder, Rakesh, Fidkowski, Krzysztof J., Maki, Kevin J.

    ISSN: 0029-5981, 1097-0207
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.11.2022
    “… In this work, we present a non‐intrusive ROM framework for steady‐state parameterized partial differential equations that uses convolutional autoencoders to provide a nonlinear …”
    Volltext
    Journal Article
  3. 3

    Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA von Chatterjee, Soumita, Pandit, Soumya, Das, Arpita

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 25.09.2025
    Veröffentlicht in Expert systems with applications (25.09.2025)
    “… Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier …”
    Volltext
    Journal Article
  4. 4

    Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals von Sahani, Mrutyunjaya, Rout, Susanta Kumar, Dash, Pradipta Kishor

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Veröffentlicht: New York IEEE 01.06.2021
    “… In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN …”
    Volltext
    Journal Article
  5. 5

    Reduced-order modeling via convolutional autoencoder for emulating combustion of hydrogen/methane fuel blends von Ding, Siyu, Ni, Chenxu, Chu, Xu, Lu, Qingzhou, Wang, Xingjian

    ISSN: 0010-2180
    Veröffentlicht: Elsevier Inc 01.04.2025
    Veröffentlicht in Combustion and flame (01.04.2025)
    “… This study presents parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE …”
    Volltext
    Journal Article
  6. 6

    Slim multi-scale convolutional autoencoder-based reduced-order models for interpretable features of a complex dynamical system von Teutsch, Philipp, Pfeffer, Philipp, Sharifi Ghazijahani, Mohammad, Cierpka, Christian, Schumacher, Jörg, Mäder, Patrick

    ISSN: 2770-9019, 2770-9019
    Veröffentlicht: AIP Publishing LLC 01.03.2025
    Veröffentlicht in APL machine learning (01.03.2025)
    “… Within the context of reduced-order models, convolutional autoencoders (CAEs) pose a universally applicable alternative to conventional approaches …”
    Volltext
    Journal Article
  7. 7

    Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network von Sahani, Mrutyunjaya, Choudhury, Sasmita, Siddique, Marif Daula, Parida, Tanmoy, Dash, Pradipta Kishore, Panda, Sanjib Kumar

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.10.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.10.2024)
    “… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN …”
    Volltext
    Journal Article
  8. 8

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques von Kadeethum, T., Ballarin, F., Choi, Y., O’Malley, D., Yoon, H., Bouklas, N.

    ISSN: 0309-1708, 1872-9657
    Veröffentlicht: United States Elsevier Ltd 01.02.2022
    Veröffentlicht in Advances in water resources (01.02.2022)
    “… , the process of CO2 sequestration). Here, we extend and present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional …”
    Volltext
    Journal Article
  9. 9
  10. 10

    Novel attention-based convolutional autoencoder and ConvLSTM for reduced-order modeling in fluid mechanics with time derivative architecture von Beiki, Alireza, Kamali, Reza

    ISSN: 0167-2789, 1872-8022
    Veröffentlicht: Elsevier B.V 15.11.2023
    Veröffentlicht in Physica. D (15.11.2023)
    “… To construct reduced-order models, we propose a convolutional autoencoder and a convolutional LSTM (CAE-ConvLSTM …”
    Volltext
    Journal Article
  11. 11

    Reduced Biquaternion Stacked Denoising Convolutional AutoEncoder for RGB-D Image Classification von Huang, Xiang, Gai, Shan

    ISSN: 1070-9908, 1558-2361
    Veröffentlicht: New York IEEE 2021
    Veröffentlicht in IEEE signal processing letters (2021)
    “… To address these problems, this letter proposes a novel RGB-D image classification framework based on reduced biquaternion stacked denoising convolutional autoencoder (RQ-SDCAE …”
    Volltext
    Journal Article
  12. 12

    A turbulence reduced order model based on non-interpolated convolutional autoencoder von WU, Pin, ZHANG, Bo, SONG, Chao, ZHOU, Zhu

    ISSN: 1000-2758, 2609-7125
    Veröffentlicht: EDP Sciences 01.02.2025
    Veröffentlicht in Xibei Gongye Daxue Xuebao (01.02.2025)
    “… Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot, yet this process frequently introduces interpolation errors and unwarranted temporal overheads …”
    Volltext
    Journal Article
  13. 13

    A turbulence reduced order model based on non-interpolated convolutional autoencoder von WU, Pin, ZHANG, Bo, SONG, Chao, Zhu, ZHOU

    ISSN: 1000-2758, 2609-7125
    Veröffentlicht: Xi'an EDP Sciences 01.02.2025
    “… Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot, yet this process frequently introduces interpolation errors and unwarranted …”
    Volltext
    Journal Article
  14. 14

    A graph convolutional autoencoder approach to model order reduction for parametrized PDEs von Pichi, Federico, Moya, Beatriz, Hesthaven, Jan S.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Elsevier Inc 15.03.2024
    Veröffentlicht in Journal of computational physics (15.03.2024)
    “… The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM …”
    Volltext
    Journal Article
  15. 15

    Convolutional Autoencoders for Reduced-Order Modeling von Sreeram Venkat, Smith, Ralph C, Kelley, Carl T

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.08.2021
    Veröffentlicht in arXiv.org (27.08.2021)
    “… and are often problem-specific \citep[see][]{carlberg_ca}. Here, we utilize randomized training data to create and train convolutional autoencoders that perform nonlinear dimension reduction for the wave and Kuramoto-Shivasinsky equations …”
    Volltext
    Paper
  16. 16

    Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation von Mack, Julian, Arcucci, Rossella, Molina-Solana, Miguel, Guo, Yi-Ke

    ISSN: 0045-7825, 1879-2138
    Veröffentlicht: Elsevier B.V 01.12.2020
    “… We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders …”
    Volltext
    Journal Article
  17. 17

    Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders von Abdedou, Azzedine, Soulaimani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 19.05.2023
    “… A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems …”
    Volltext
    Journal Article
  18. 18
  19. 19

    Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder von Chaudhry, Shubham, Abdedou, Azzedine, Soulaïmani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 01.12.2025
    “… ) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then …”
    Volltext
    Journal Article
  20. 20

    Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-Collocation method von Romor, Francesco, Stabile, Giovanni, Rozza, Gianluigi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.03.2022
    Veröffentlicht in arXiv.org (01.03.2022)
    “… reduced-order models based on linear subspace approximations. Among the possible solutions, there are purely data-driven methods that leverage autoencoders …”
    Volltext
    Paper