Suchergebnisse - Program Analysis for Machine Learning Models

  1. 1

    Program Analysis for Machine Learning Models von Usman, Muhammad

    ISBN: 9798358473775
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2022
    “… Machine learning models have many applications, being used for example in pattern analysis, image classification, or sentiment analysis for textual data, and also in medical diagnosis or perception …”
    Volltext
    Dissertation
  2. 2

    Artificial intelligence in dermatology: a comparative analysis of computer vision programs based on machine learning models von Korabelnikov, D. I., Lamotkin, A. I.

    ISSN: 2070-4909, 2070-4933
    Veröffentlicht: 10.11.2025
    Veröffentlicht in Farmakoèkonomika (Moskva. Online) (10.11.2025)
    “… Objective: Comparative analysis of modern computer programs (smartphone programs …”
    Volltext
    Journal Article
  3. 3

    Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes von Bitencourt-Ferreira, Gabriela, de Azevedo, Walter Filgueira

    ISSN: 0301-4622, 1873-4200, 1873-4200
    Veröffentlicht: Netherlands Elsevier B.V 01.09.2018
    Veröffentlicht in Biophysical chemistry (01.09.2018)
    “… From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning …”
    Volltext
    Journal Article
  4. 4
  5. 5

    The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity von Veit-Acosta, Martina, de Azevedo Junior, Walter Filgueira

    ISSN: 1875-533X, 1875-533X
    Veröffentlicht: 01.01.2021
    Veröffentlicht in Current medicinal chemistry (01.01.2021)
    “… Machine learning techniques can contribute to predicting this type of interaction. We may apply these techniques following two approaches …”
    Weitere Angaben
    Journal Article
  6. 6

    Development of patient-specific apparent blood viscosity predictive models for computational fluid dynamics analysis of intracranial aneurysms with machine learning approaches von Suzuki, Takashi, Takao, Hiroyuki, Suzuki, Tomoaki, Fujimura, Soichiro, Hataoka, Shunsuke, Kodama, Tomonobu, Aoki, Ken, Ishibashi, Toshihiro, Yamamoto, Makoto, Yamamoto, Hideki, Murayama, Yuichi

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Ireland Elsevier B.V 01.08.2025
    Veröffentlicht in Computer methods and programs in biomedicine (01.08.2025)
    “… •Predictive models for blood viscosity were constructed by machine learning.•Patient-specific viscosities were predicted from blood test results …”
    Volltext
    Journal Article
  7. 7
  8. 8
  9. 9

    Probabilistic analysis of vertical concrete dry casks subjected to tip-over and aging effects von Ebad Sichani, Majid, Hanifehzadeh, Mohammad, Padgett, Jamie E., Gencturk, Bora

    ISSN: 0029-5493, 1872-759X
    Veröffentlicht: Amsterdam Elsevier B.V 01.03.2019
    Veröffentlicht in Nuclear engineering and design (01.03.2019)
    “… •Fragility and risk analysis is performed for the selected responses.•Effect of aging and variation of design parameters on the fragilities is explored …”
    Volltext
    Journal Article
  10. 10

    Data-driven consideration of genetic disorders for global genomic newborn screening programs von Minten, Thomas, Bick, Sarah, Adelson, Sophia, Gehlenborg, Nils, Amendola, Laura M, Boemer, François, Coffey, Alison J, Encina, Nicolas, Ferlini, Alessandra, Kirschner, Janbernd, Russell, Bianca E, Servais, Laurent, Sund, Kristen L, Taft, Ryan J, Tsipouras, Petros, Zouk, Hana, Bick, David, Green, Robert C, Gold, Nina B

    ISSN: 1530-0366, 1530-0366
    Veröffentlicht: United States 01.07.2025
    Veröffentlicht in Genetics in medicine (01.07.2025)
    “… We used regression analysis to identify several predictors of inclusion and developed a machine learning model to rank genes for public health consideration …”
    Weitere Angaben
    Journal Article
  11. 11

    Identifying Hydrilla verticillata in Real Time With a Machine Learning–Based Underwater Object Detection Program von Jeong, Han S., Schad, Aaron N., Cheng, Jing‐Ru C., Donohue, Griffin, Hawkins, Jazmine L., Steen, Andrew M., Farthing, William F., Knight, Ian A., Dodd, Lynde L., Katzenmeyer, Alan W., Sistrunk, Virginia A., Hammond, Shea L., Bellinger, Brent J., Rycroft, Taylor E.

    ISSN: 1052-7613, 1099-0755
    Veröffentlicht: Oxford Wiley Subscription Services, Inc 01.01.2025
    Veröffentlicht in Aquatic conservation (01.01.2025)
    “… To help with this challenge, we have developed an artificial intelligence/machine learning (AI/ML …”
    Volltext
    Journal Article
  12. 12

    Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge Regression models von Geraldo-Campos, Luis Alberto, Soria, Juan J, Pando-Ezcurra, Tamara

    ISSN: 2227-7099, 2227-7099
    Veröffentlicht: Basel MDPI 01.07.2022
    Veröffentlicht in Economies (01.07.2022)
    “… This study aimed to determine the optimal machine learning predictive model for the credit risk of companies under the Reactiva Peru Program because of COVID-19 …”
    Volltext
    Journal Article
  13. 13

    Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops von Danner, Martin, Berger, Katja, Wocher, Matthias, Mauser, Wolfram, Hank, Tobias

    ISSN: 0924-2716, 1872-8235
    Veröffentlicht: Elsevier B.V 01.03.2021
    Veröffentlicht in ISPRS journal of photogrammetry and remote sensing (01.03.2021)
    “… machine learning regression models fast and efficiently based on training data from a lookup table of synthetic vegetation …”
    Volltext
    Journal Article
  14. 14

    Optimizing BenMAP health impact assessment with meteorological factor driven machine learning models von Wu, Juncheng, Dai, Qili, Song, Shaojie

    ISSN: 0048-9697, 1879-1026, 1879-1026
    Veröffentlicht: Netherlands Elsevier B.V 01.11.2024
    Veröffentlicht in The Science of the total environment (01.11.2024)
    “… ), caused by limited meteorological factor data and missing pollutant data. By employing data increment strategies and multiple machine learning models, this research …”
    Volltext
    Journal Article
  15. 15

    Study on Process Design Based on Language Analysis and Image Discrimination Using CNN Deep Learning von Hayashi, Akio, Morimoto, Yoshitaka

    ISSN: 1881-7629, 1883-8022
    Veröffentlicht: Tokyo Fuji Technology Press Co. Ltd 01.03.2023
    Veröffentlicht in International journal of automation technology (01.03.2023)
    “… At present, machining with numerically controlled (NC) machine tools is mostly performed by NC programs generated by computer-aided design and computer-aided manufacturing (CAD/CAM) systems …”
    Volltext
    Journal Article
  16. 16

    Performance evaluation of machine learning models in cervical cancer diagnosis: Systematic review and meta-analysis von Ramos-Casallas, Alejandro, Cardona-Mendoza, Andrés, Perdomo-Lara, Sandra Janneth, Rico-Mendoza, Alejandro, Porras-Ramírez, Alexandra

    ISSN: 0959-8049, 1879-0852, 1879-0852
    Veröffentlicht: England Elsevier Ltd 16.10.2025
    Veröffentlicht in European journal of cancer (1990) (16.10.2025)
    “… This systematic review aimed to evaluate the diagnostic performance of machine learning models based on sociodemographic, epidemiologic, and clinical data for the detection of cervical cancer …”
    Volltext
    Journal Article
  17. 17

    A general optimization framework for nanofabrication using shadow sphere Lithography: A case study on chiral nanohole arrays von Chen, Xinyi, Cheng, Mingyu, Zhang, Jinglan, Wang, Yuxia, Chen, Chong, Zhang, Qian, Zhang, Yongxin, Wang, Xingguo, Zhang, Gang, Ai, Bin

    ISSN: 0021-9797, 1095-7103, 1095-7103
    Veröffentlicht: United States Elsevier Inc 15.02.2025
    Veröffentlicht in Journal of colloid and interface science (15.02.2025)
    “… The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML …”
    Volltext
    Journal Article
  18. 18

    MLMD—A Malware-Detecting Antivirus Tool Based on the XGBoost Machine Learning Algorithm von Palša, Jakub, Ádám, Norbert, Hurtuk, Ján, Chovancová, Eva, Madoš, Branislav, Chovanec, Martin, Kocan, Stanislav

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.07.2022
    Veröffentlicht in Applied sciences (01.07.2022)
    “… This paper focuses on training machine learning models using the XGBoost and extremely randomized trees algorithms on two datasets obtained using static and dynamic analysis of real malicious and benign samples …”
    Volltext
    Journal Article
  19. 19
  20. 20