Suchergebnisse - Privacy-Preserving Techniques for Data Analysis and Machine Learning

  1. 1

    An Optimized Multi-Task Learning Model for Disaster Classification and Victim Detection in Federated Learning Environments von Yi Jie Wong, Mau‐Luen Tham, Ban-Hoe Kwan, Ezra Morris, Yasunori Owada

    ISSN: 2169-3536
    Veröffentlicht: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2022
    Veröffentlicht in IEEE Access (01.01.2022)
    Volltext
    Journal Article
  2. 2

    A Novel Global Prototype-Based Node Embedding Technique von Zyad Alkayem, Rami Zewail, Amin Shoukry, Daisuke Kawahara, Samir A. Elsagheer Mohamed

    ISSN: 2169-3536
    Veröffentlicht: Institute of Electrical and Electronics Engineers (IEEE) 01.01.2022
    Veröffentlicht in IEEE Access (01.01.2022)
    Volltext
    Journal Article
  3. 3

    Balancing Privacy and Utility in AI Training: Comparative Analysis of Privacy-Preserving Techniques von Maheriya, Arpita, Panchal, Shailesh

    ISSN: 2073-607X, 2076-0930
    Veröffentlicht: Kohat Kohat University of Science and Technology (KUST) 01.01.2024
    “… Conventional approaches frequently risk exposing sensitive information when sharing data. This research paper explores privacy-preserving machine learning techniques …”
    Volltext
    Journal Article
  4. 4

    Privacy-Preserving Deep Learning on Machine Learning as a Service - A Comprehensive Survey von Tanuwidjaja, Harry Chandra, Choi, Rakyong, Baek, Seunggeun, Kim, Kwangjo

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2020
    Veröffentlicht in IEEE access (01.01.2020)
    “… Machine Learning as a Service, (MLaaS) which leverages deep learning techniques for predictive analytics to enhance decision-making, has become a hot commodity …”
    Volltext
    Journal Article
  5. 5

    Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results von Li, Xiaoxiao, Gu, Yufeng, Dvornek, Nicha, Staib, Lawrence H., Ventola, Pamela, Duncan, James S.

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Amsterdam Elsevier B.V 01.10.2020
    Veröffentlicht in Medical image analysis (01.10.2020)
    “… •A novel framework for multi-site fMRI analysis without data-sharing using privacy-preserving federated learning …”
    Volltext
    Journal Article
  6. 6

    NPMML: A Framework for Non-Interactive Privacy-Preserving Multi-Party Machine Learning von Li, Tong, Li, Jin, Chen, Xiaofeng, Liu, Zheli, Lou, Wenjing, Hou, Y. Thomas

    ISSN: 1545-5971, 1941-0018
    Veröffentlicht: Washington IEEE 01.11.2021
    “… In the recent decade, deep learning techniques have been widely adopted for founding artificial Intelligent applications, which led to successes in many data analysis tasks, such as risk assessment …”
    Volltext
    Journal Article
  7. 7

    Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities von Shen, Meng, Tang, Xiangyun, Zhu, Liehuang, Du, Xiaojiang, Guizani, Mohsen

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.10.2019
    Veröffentlicht in IEEE internet of things journal (01.10.2019)
    “… Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices …”
    Volltext
    Journal Article
  8. 8

    Federated Learning With Privacy-Preserving Ensemble Attention Distillation von Gong, Xuan, Song, Liangchen, Vedula, Rishi, Sharma, Abhishek, Zheng, Meng, Planche, Benjamin, Innanje, Arun, Chen, Terrence, Yuan, Junsong, Doermann, David, Wu, Ziyan

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.07.2023
    Veröffentlicht in IEEE transactions on medical imaging (01.07.2023)
    “… Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized …”
    Volltext
    Journal Article
  9. 9

    Privacy-preserving federated learning based on partial low-quality data von Wang, Huiyong, Wang, Qi, Ding, Yong, Tang, Shijie, Wang, Yujue

    ISSN: 2192-113X, 2192-113X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
    “… Traditional machine learning requires collecting data from participants for training, which may lead to malicious acquisition of privacy in participants’ data …”
    Volltext
    Journal Article
  10. 10

    Privacy-Preserving Data-Driven Learning Models for Emerging Communication Networks: A Comprehensive Survey von Fouda, Mostafa M., Fadlullah, Zubair Md, Ibrahem, Mohamed I., Kato, Nei

    ISSN: 2373-745X
    Veröffentlicht: IEEE 01.08.2025
    Veröffentlicht in IEEE Communications surveys and tutorials (01.08.2025)
    “… lead to severe privacy concerns. Therefore, the concept of privacy-preserving data-driven learning models has recently emerged as a hot area of research to facilitate model training on large …”
    Volltext
    Journal Article
  11. 11

    Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach von S, Selvakanmani, Dharani Devi, G, V, Rekha, Jeyalakshmi, J

    ISSN: 2948-2933, 0897-1889, 2948-2925, 2948-2933, 1618-727X
    Veröffentlicht: Cham Springer International Publishing 01.08.2024
    Veröffentlicht in Journal of digital imaging (01.08.2024)
    “… Machine learning techniques, particularly deep learning, have demonstrated impressive success in various image recognition tasks, including breast cancer classification …”
    Volltext
    Journal Article
  12. 12

    Multiparty Secure Broad Learning System for Privacy Preserving von Cao, Xiao-Kai, Wang, Chang-Dong, Lai, Jian-Huang, Huang, Qiong, Chen, C. L. Philip

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.10.2023
    Veröffentlicht in IEEE transactions on cybernetics (01.10.2023)
    “… Unfortunately, directly integrating multiparty data could not meet the privacy-preserving requirements, which then induces the development of privacy-preserving machine learning (PPML …”
    Volltext
    Journal Article
  13. 13

    PPSF: A Privacy-Preserving and Secure Framework Using Blockchain-Based Machine-Learning for IoT-Driven Smart Cities von Kumar, Prabhat, Kumar, Randhir, Srivastava, Gautam, Gupta, Govind P., Tripathi, Rakesh, Gadekallu, Thippa Reddy, Xiong, Neal N.

    ISSN: 2327-4697, 2334-329X
    Veröffentlicht: Piscataway IEEE 01.07.2021
    “… ), transparency, scalability, and verifiability limits faster adaptations of smart cities. Motivated by the aforementioned discussions, we present a Privacy-Preserving and Secure Framework (PPSF …”
    Volltext
    Journal Article
  14. 14

    High performance logistic regression for privacy-preserving genome analysis von De Cock, Martine, Dowsley, Rafael, Nascimento, Anderson C. A., Railsback, Davis, Shen, Jianwei, Todoki, Ariel

    ISSN: 1755-8794, 1755-8794
    Veröffentlicht: London BioMed Central 20.01.2021
    Veröffentlicht in BMC medical genomics (20.01.2021)
    “… Training machine learning models on the joint data without violating privacy is a major technology challenge that can be addressed by combining techniques from machine learning and cryptography …”
    Volltext
    Journal Article
  15. 15

    Optimal Machine Learning Based Privacy Preserving Blockchain Assisted Internet of Things with Smart Cities Environment von Al-Qarafi, A., Alrowais, Fadwa, S. Alotaibi, Saud, Nemri, Nadhem, Al-Wesabi, Fahd N., Al Duhayyim, Mesfer, Marzouk, Radwa, Othman, Mahmoud, Al-Shabi, M.

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.06.2022
    Veröffentlicht in Applied sciences (01.06.2022)
    “… In this view, this study develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving …”
    Volltext
    Journal Article
  16. 16

    A Review on Privacy-Preserving Techniques for Spatiotemporal Data von AbuElHassan, Shadwa, Abo Alian, Alshaimaa, AbdelKader, Tamer, Badr, Nagwa

    ISSN: 2364-415X, 2364-4168
    Veröffentlicht: Cham Springer International Publishing 01.11.2025
    Veröffentlicht in International journal of data science and analytics (01.11.2025)
    “… Although existing surveys have addressed privacy-preserving methods, many lack systematic methodological frameworks, rigorous quantitative comparisons, or in-depth analysis of emerging techniques …”
    Volltext
    Journal Article
  17. 17

    Achieving Privacy-Preserving and Verifiable Support Vector Machine Training in the Cloud von Hu, Chenfei, Zhang, Chuan, Lei, Dian, Wu, Tong, Liu, Ximeng, Zhu, Liehuang

    ISSN: 1556-6013, 1556-6021
    Veröffentlicht: New York IEEE 01.01.2023
    “… Several privacy-preserving machine learning schemes have been suggested recently to guarantee data and model privacy in the cloud …”
    Volltext
    Journal Article
  18. 18

    Revolutionizing Cyber Threat Detection with Large Language Models: A privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices von Ferrag, Mohamed Amine, Ndhlovu, Mthandazo, Tihanyi, Norbert, Cordeiro, Lucas C., Debbah, Merouane, Lestable, Thierry, Thandi, Narinderjit Singh

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2024
    Veröffentlicht in IEEE access (01.01.2024)
    “… IoT devices are expanding rapidly, resulting in a growing need for efficient techniques to autonomously identify network-based attacks in IoT networks with both high precision and minimal computational requirements …”
    Volltext
    Journal Article
  19. 19

    Federated unsupervised random forest for privacy-preserving patient stratification von Pfeifer, Bastian, Sirocchi, Christel, Bloice, Marcus D, Kreuzthaler, Markus, Urschler, Martin

    ISSN: 1367-4803, 1367-4811, 1367-4811
    Veröffentlicht: England Oxford University Press 01.09.2024
    Veröffentlicht in Bioinformatics (Oxford, England) (01.09.2024)
    “… data’s role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing …”
    Volltext
    Journal Article
  20. 20

    Secure Multiparty Computation for PrivacyPreserving Machine Learning in Healthcare: A Comprehensive Survey von Naresh, Vankamamidi S., Venkata Raju, A., Srinivasa Rao, O.

    ISSN: 1939-5108, 1939-0068
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.09.2025
    “… ABSTRACT Privacypreserving machine learning (PPML) using secure multiparty computation (SMC …”
    Volltext
    Journal Article