Suchergebnisse - Predicting the arrest using Random forest Algorithm

  1. 1

    An Algorithm Based on Deep Learning for Predicting In‐Hospital Cardiac Arrest von Kwon, Joon‐myoung, Lee, Youngnam, Lee, Yeha, Lee, Seungwoo, Park, Jinsik

    ISSN: 2047-9980, 2047-9980
    Veröffentlicht: England John Wiley and Sons Inc 03.07.2018
    Veröffentlicht in Journal of the American Heart Association (03.07.2018)
    “… The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the secondary outcome was death without attempted resuscitation …”
    Volltext
    Journal Article
  2. 2

    Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing von Fernandes, Marta, Mendes, Rúben, Vieira, Susana M., Leite, Francisca, Palos, Carlos, Johnson, Alistair, Finkelstein, Stan, Horng, Steven, Celi, Leo Anthony

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 02.04.2020
    Veröffentlicht in PloS one (02.04.2020)
    “… -mortality and cardiopulmonary arrest. Our study cohort consisted of 235826 adult patients triaged at a Portuguese Emergency Department from 2012 to 2016 …”
    Volltext
    Journal Article
  3. 3

    Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study von Pirneskoski, Jussi, Tamminen, Joonas, Kallonen, Antti, Nurmi, Jouni, Kuisma, Markku, Olkkola, Klaus T., Hoppu, Sanna

    ISSN: 2666-5204, 2666-5204
    Veröffentlicht: Netherlands Elsevier B.V 01.12.2020
    Veröffentlicht in Resuscitation plus (01.12.2020)
    “… Thus, we aimed to compare the mortality prediction accuracy of NEWS and random forest machine learning using prehospital vital signs …”
    Volltext
    Journal Article
  4. 4

    Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards von Churpek, Matthew M, Yuen, Trevor C, Winslow, Christopher, Meltzer, David O, Kattan, Michael W, Edelson, Dana P

    ISSN: 1530-0293
    Veröffentlicht: United States 01.02.2016
    Veröffentlicht in Critical care medicine (01.02.2016)
    “… arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines …”
    Weitere Angaben
    Journal Article
  5. 5

    Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach von Chang, Sheng-Nan, Hu, Nian-Ze, Wu, Jo-Hsuan, Cheng, Hsun-Mao, Caffrey, James L., Yu, Hsi-Yu, Chen, Yih-Sharng, Hsu, Jiun, Lin, Jou-Wei

    ISSN: 2047-783X, 0949-2321, 2047-783X
    Veröffentlicht: London BioMed Central 15.09.2023
    Veröffentlicht in European journal of medical research (15.09.2023)
    “… The discriminatory power (DP) for predicting in-hospital mortality was tested using both random forest (RF …”
    Volltext
    Journal Article
  6. 6

    Explainable machine learning model based on EEG, ECG, and clinical features for predicting neurological outcomes in cardiac arrest patient von Niu, Yanxiang, Chen, Xin, Fan, Jianqi, Liu, Chunli, Fang, Menghao, Liu, Ziquan, Meng, Xiangyan, Liu, Yanqing, Lu, Lu, Fan, Haojun

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 03.04.2025
    Veröffentlicht in Scientific reports (03.04.2025)
    “… Using the I-CARE database, we analyzed EEG, ECG, and clinical data from comatose cardiac arrest patients …”
    Volltext
    Journal Article
  7. 7

    A Method for Predicting Cardiovascular Disorder using Machine Learning Techniques von Hegde, Ramakrishna, Pavithra, D R, Shivashankara, S, Prasanna Kumar, G, Soumyasri, S M, Nagashree, S

    Veröffentlicht: IEEE 21.11.2024
    “… In most of these cases people experience cardiac arrest, some of which are normal. First, families of patients are vulnerable because it takes only a few minutes for a person to die of a heart attack, and it is difficult to get medical help in time …”
    Volltext
    Tagungsbericht
  8. 8

    Machine Learning Models for Predicting in-Hospital Cardiac Arrest: A Comparative Analysis with Logistic Regression von Chang, Wei-Shan, Hsiao, Kai-Yuan, Lin, Lian-Yu, Chen, MingChih, Shia, Ben-Chang, Lin, Chung-Yu

    ISSN: 1178-7074, 1178-7074
    Veröffentlicht: New Zealand Dove Medical Press Limited 01.01.2025
    Veröffentlicht in International journal of general medicine (01.01.2025)
    “… To develop and compare multiple machine learning (ML) algorithms with traditional logistic regression for predicting in-hospital cardiac arrest (IHCA …”
    Volltext
    Journal Article
  9. 9

    Application of machine learning techniques to predict rupture propagation and arrest in 2-D dynamic earthquake simulations von Ahamed, Sabber, Daub, Eric G

    ISSN: 0956-540X, 1365-246X
    Veröffentlicht: Oxford University Press 01.03.2021
    Veröffentlicht in Geophysical journal international (01.03.2021)
    “… Two models have been developed using neural networks and the random forest to predict if a rupture can break 2-D geometrically complex fault …”
    Volltext
    Journal Article
  10. 10

    Development and validation of a machine learning model for predicting mortality risk in veno-arterial extracorporeal membrane oxygenation patients von Gao, Hanming, Huang, Xiaolin, Zhou, Kaihuan, Ling, Yicong, Chen, Yin, Mou, Chenglin, Li, Shuanglei, Lu, Junyu

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 24.11.2025
    Veröffentlicht in Scientific reports (24.11.2025)
    “… mortality.Feature selection was conducted using Lasso regression …”
    Volltext
    Journal Article
  11. 11

    Developing a Machine Learning Model for Predicting 30-Day Major Adverse Cardiac and Cerebrovascular Events in Patients Undergoing Noncardiac Surgery: Retrospective Study von Kwun, Ju-Seung, Ahn, Houng-Beom, Kang, Si-Hyuck, Yoo, Sooyoung, Kim, Seok, Song, Wongeun, Hyun, Junho, Oh, Ji Seon, Baek, Gakyoung, Suh, Jung-Won

    ISSN: 1438-8871, 1439-4456, 1438-8871
    Veröffentlicht: Canada Gunther Eysenbach MD MPH, Associate Professor 09.04.2025
    Veröffentlicht in Journal of medical Internet research (09.04.2025)
    “… and manage medical costs more efficiently. This study aimed to use the Observational Medical Outcomes Partnership Common Data Model to develop a predictive model by applying machine learning algorithms that can effectively predict major …”
    Volltext
    Journal Article
  12. 12

    Predicting Arrest Release Outcomes: A Comparative Analysis of Machine Learning Models von Adebayo, O. P., Ibrahim, Ahmed, Oyeleke, K.T.

    ISSN: 1812-125X, 2664-2530
    Veröffentlicht: College of Education for Pure Sciences 01.10.2025
    “… This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002 …”
    Volltext
    Journal Article
  13. 13

    Prognostic machine learning models for predicting postoperative complications following general surgery in Bandar Abbas, Iran: a study protocol von Vatankhah Tarbebar, Majid, Mohammadi, Milad, Mehrnoush, Vahid, Darsareh, Fatemeh

    ISSN: 2044-6055, 2044-6055
    Veröffentlicht: England British Medical Journal Publishing Group 28.10.2025
    Veröffentlicht in BMJ open (28.10.2025)
    “… Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general …”
    Volltext
    Journal Article
  14. 14

    Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies von Müller, Michael, Rossetti, Andrea O., Zimmermann, Rebekka, Alvarez, Vincent, Rüegg, Stephan, Haenggi, Matthias, Z’Graggen, Werner J., Schindler, Kaspar, Zubler, Frédéric

    ISSN: 1364-8535, 1466-609X, 1364-8535, 1366-609X, 1466-609X
    Veröffentlicht: London BioMed Central 07.12.2020
    Veröffentlicht in Critical care (London, England) (07.12.2020)
    “… Random forest classifiers were trained using 8 visual EEG features—first alone, then in combination with clinical features …”
    Volltext
    Journal Article
  15. 15

    Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest von Mayampurath, Anoop, Hagopian, Raffi, Venable, Laura, Carey, Kyle, Edelson, Dana, Churpek, Matthew

    ISSN: 1530-0293, 1530-0293
    Veröffentlicht: United States 01.02.2022
    Veröffentlicht in Critical care medicine (01.02.2022)
    “… Although models such as the Cardiac Arrest Survival Post-Resuscitation In-hospital score are useful for predicting neurologic outcomes, they were developed using traditional statistical techniques …”
    Weitere Angaben
    Journal Article
  16. 16

    Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG von Salminen, Miikka, Partala, Juha, Vayrynen, Eero, Kortelainen, Jukka

    ISSN: 2325-887X
    Veröffentlicht: CinC 01.10.2023
    Veröffentlicht in Computing in cardiology (01.10.2023)
    “… Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA …”
    Volltext
    Tagungsbericht
  17. 17

    Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack and Diseases von Obasi, Thankgod, Omair Shafiq, M.

    Veröffentlicht: IEEE 01.12.2019
    “… This knowledge can be acquired using various data mining techniques to mine knowledge by designing models from the medical records dataset …”
    Volltext
    Tagungsbericht
  18. 18

    Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics von Cheng, Chi-Yung, Kung, Chia-Te, Chen, Fu-Cheng, Chiu, I-Min, Lin, Chun-Hung Richard, Chu, Chun-Chieh, Kung, Chien Feng, Su, Chih-Min

    ISSN: 2296-858X, 2296-858X
    Veröffentlicht: Lausanne Frontiers Media SA 20.10.2022
    Veröffentlicht in Frontiers in medicine (20.10.2022)
    “… PurposeTo build machine learning models for predicting the risk of in-hospital death in patients with sepsis within 48 h, using only dynamic changes in the patient's vital …”
    Volltext
    Journal Article
  19. 19

    Predicting Myocardial Rupture after Acute Myocardial Infarction in Hospitalized Patients using Machine Learning von Azwari, Sana Al

    Veröffentlicht: IEEE 27.03.2021
    Veröffentlicht in 2021 National Computing Colleges Conference (NCCC) (27.03.2021)
    “… That is also the reason why coronary artery diseases, including MI, cardiac arrest, and heart failure, have been labeled a disease of senior citizens …”
    Volltext
    Tagungsbericht
  20. 20

    A machine learning model for predicting short‐term outcomes after rapid response system activation von Naito, Takaki, Li, Micheal, Fujitani, Shigeki

    ISSN: 2052-8817, 2052-8817
    Veröffentlicht: United States John Wiley & Sons, Inc 12.08.2025
    Veröffentlicht in Acute medicine & surgery (12.08.2025)
    “… To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic …”
    Volltext
    Journal Article