Suchergebnisse - Physics-informed greedy algorithm

  • Treffer 1 - 20 von 20
Treffer weiter einschränken
  1. 1

    gLaSDI: Parametric physics-informed greedy latent space dynamics identification von He, Xiaolong, Choi, Youngsoo, Fries, William D., Belof, Jonathan L., Chen, Jiun-Shyan

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: United States Elsevier Inc 15.09.2023
    Veröffentlicht in Journal of computational physics (15.09.2023)
    “… reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual …”
    Volltext
    Journal Article
  2. 2

    Greedy Algorithms for Physics-Informed Sparse Sensor Selection von Clark, Emily E

    ISBN: 9798684637322
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020
    “… Instead, researchers have developed techniques to calculate near-optimal sensor placements, usually based on convex relaxations or greedy algorithms …”
    Volltext
    Dissertation
  3. 3

    gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification von He, Xiaolong, Choi, Youngsoo, Fries, William D, Belof, Jon, Chen, Jiun-Shyan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.05.2023
    Veröffentlicht in arXiv.org (18.05.2023)
    “… reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual …”
    Volltext
    Paper
  4. 4

    Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence von Yang, Xiu, Barajas-Solano, David, Tartakovsky, Guzel, Tartakovsky, Alexandre M.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 15.10.2019
    Veröffentlicht in Journal of computational physics (15.10.2019)
    “… : physics-informed CoKriging (CoPhIK). In CoKriging-based multifidelity methods, the quantities of interest are modeled as linear combinations of multiple parameterized stationary Gaussian processes (GPs …”
    Volltext
    Journal Article
  5. 5

    Certified data-driven physics-informed greedy auto-encoder simulator von He, Xiaolong, Choi, Youngsoo, Fries, William D, Belof, Jonathan L, Chen, Jiun-Shyan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.11.2022
    Veröffentlicht in arXiv.org (24.11.2022)
    “… To effectively explore the parameter space for optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed error indicator is introduced to search for optimal …”
    Volltext
    Paper
  6. 6

    An algorithm for physics informed scan path optimization in additive manufacturing von Stump, B.

    ISSN: 0927-0256, 1879-0801
    Veröffentlicht: United States Elsevier B.V 01.09.2022
    Veröffentlicht in Computational materials science (01.09.2022)
    “… •Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure …”
    Volltext
    Journal Article
  7. 7

    Generative point sampling strategies for physics-informed neural networks von Kochliaridis, Vasileios, Dilmperis, Ioannis, Palaskos, Achilleas, Vlahavas, Ioannis

    ISSN: 0177-0667, 1435-5663
    Veröffentlicht: London Springer London 01.10.2025
    Veröffentlicht in Engineering with computers (01.10.2025)
    “… Physics-Informed Neural Networks (PINNs) have been a groundbreaking approach for solving complex boundary-value systems using Neural Networks …”
    Volltext
    Journal Article
  8. 8

    Physics-Aware Neural Networks for Distribution System State Estimation von Zamzam, Ahmed Samir, Sidiropoulos, Nicholas D.

    ISSN: 0885-8950, 1558-0679
    Veröffentlicht: New York IEEE 01.11.2020
    Veröffentlicht in IEEE transactions on power systems (01.11.2020)
    “… The distribution system state estimation problem seeks to determine the network state from available measurements. Widely used Gauss-Newton approaches are very …”
    Volltext
    Journal Article
  9. 9

    Thermodynamically Consistent Physics-Informed Data-Driven Computing and Reduced-Order Modeling of Nonlinear Materials von He, Xiaolong

    ISBN: 9798351426983
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2022
    “… Physical simulations have influenced the advancements in engineering, technology, and science more rapidly than ever before. However, it remains challenging …”
    Volltext
    Dissertation
  10. 10

    Gauss Newton Method for Solving Variational Problems of PDEs with Neural Network Discretizaitons von Hao, Wenrui, Hong, Qingguo, Jin, Xianlin

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.07.2024
    Veröffentlicht in Journal of scientific computing (01.07.2024)
    “… Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions …”
    Volltext
    Journal Article
  11. 11

    Physics-informed data-driven Bayesian network for the risk analysis of hydrogen refueling stations von Xing, Jinduo, Qian, Jiaqi, Peng, Rui, Zio, Enrico

    ISSN: 0360-3199
    Veröffentlicht: Elsevier Ltd 18.03.2024
    Veröffentlicht in International journal of hydrogen energy (18.03.2024)
    “… The safety of hydrogen refueling stations (HRSs) is receiving increasing attention with the growth use of hydrogen energy. Existing risk assessment methods of …”
    Volltext
    Journal Article
  12. 12

    GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs von Chen, Yanlai, Koohy, Shawn

    ISSN: 0168-874X, 1872-6925
    Veröffentlicht: Elsevier B.V 01.01.2024
    Veröffentlicht in Finite elements in analysis and design (01.01.2024)
    “… Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs …”
    Volltext
    Journal Article
  13. 13

    POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations von Hijazi, Saddam, Freitag, Melina, Landwehr, Niels

    ISSN: 2213-7467, 2213-7467
    Veröffentlicht: Cham Springer International Publishing 18.03.2023
    “… We present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs …”
    Volltext
    Journal Article
  14. 14

    Physics-Informed Graph Capsule Generative Autoencoder for Probabilistic AC Optimal Power Flow von Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E.

    ISSN: 2471-285X, 2471-285X
    Veröffentlicht: IEEE 01.10.2024
    “… Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating …”
    Volltext
    Journal Article
  15. 15

    Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence von Yang, Xiu, Barajas-Solano, David, Tartakovsky, Guzel, Tartakovsky, Alexandre

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.11.2018
    Veröffentlicht in arXiv.org (24.11.2018)
    “… : physics-informed CoKriging (CoPhIK). In CoKriging-based multifidelity methods, the quantities of interest are modeled as linear combinations of multiple parameterized stationary Gaussian processes (GPs …”
    Volltext
    Paper
  16. 16

    Greedy training algorithms for neural networks and applications to PDEs von Siegel, Jonathan W., Hong, Qingguo, Jin, Xianlin, Hao, Wenrui, Xu, Jinchao

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Elsevier Inc 01.07.2023
    Veröffentlicht in Journal of computational physics (01.07.2023)
    “… It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks …”
    Volltext
    Journal Article
  17. 17

    Gauss Newton method for solving variational problems of PDEs with neural network discretizaitons von Hao, Wenrui, Hong, Qingguo, Jin, Xianlin

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.01.2024
    Veröffentlicht in arXiv.org (21.01.2024)
    “… Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions …”
    Volltext
    Paper
  18. 18

    Greedy Training Algorithms for Neural Networks and Applications to PDEs von Siegel, Jonathan W, Hong, Qingguo, Jin, Xianlin, Hao, Wenrui, Xu, Jinchao

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.03.2023
    Veröffentlicht in arXiv.org (24.03.2023)
    “… It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks …”
    Volltext
    Paper
  19. 19

    GS-PINN: Greedy Sampling for Parameter Estimation in Partial Differential Equations von ootani, Ali, Kapadia, Harshit, Chellappa, Sridhar, Goyal, Pawan, Benner, Peter

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.05.2024
    Veröffentlicht in arXiv.org (14.05.2024)
    “… equation to estimate its parameters. Greedy samples are used to train a physics-informed neural network architecture which maps the nonlinear relation between spatio-temporal data and the measured values …”
    Volltext
    Paper
  20. 20

    Online sequential decision making of multi-stage assembly process parameters based on deep reinforcement learning and its application in diesel engine production von Song, Yi-Tian, Sun, Yan-Ning, Liu, Li-Lan, Wu, Jie, Gao, Zeng-Gui, Qin, Wei

    ISSN: 0278-6125
    Veröffentlicht: Elsevier Ltd 01.10.2025
    Veröffentlicht in Journal of manufacturing systems (01.10.2025)
    “… Maintaining fixed parameters during batch assembly of complex mechanical products often results in quality inconsistencies due to time-varying operational …”
    Volltext
    Journal Article