Suchergebnisse - Parallel machine learning algorithm

  1. 1

    Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery von Razavi-Termeh, Seyed Vahid, Sadeghi-Niaraki, Abolghasem, Seo, MyoungBae, Choi, Soo-Mi

    ISSN: 0048-9697, 1879-1026, 1879-1026
    Veröffentlicht: Netherlands Elsevier B.V 15.05.2023
    Veröffentlicht in The Science of the total environment (15.05.2023)
    “… This study employed a genetic algorithm (GA) to fine-tune parallel ensemble-based machine learning algorithms (random forest (RF …”
    Volltext
    Journal Article
  2. 2

    A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems von Arık, Oğuzhan Ahmet, Toksarı, Mehmet Duran

    ISSN: 1947-8283, 1947-8291
    Veröffentlicht: Hershey IGI Global 01.07.2021
    “… This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration …”
    Volltext
    Journal Article
  3. 3

    Why Dataset Properties Bound the Scalability of Parallel Machine Learning Training Algorithms von Cheng, Daning, Li, Shigang, Zhang, Hanping, Xia, Fen, Zhang, Yunquan

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.07.2021
    “… However, the scalability and performance reproducibility of parallel machine learning training, which mainly uses stochastic optimization algorithms, are limited …”
    Volltext
    Journal Article
  4. 4

    High-performance medical data processing technology based on distributed parallel machine learning algorithm von Liu, Ji, Liang, Xiao, Ruan, Wenxi, Zhang, Bo

    ISSN: 0920-8542, 1573-0484
    Veröffentlicht: New York Springer US 01.03.2022
    Veröffentlicht in The Journal of supercomputing (01.03.2022)
    “… Here, a Bilayer Parallel Training-Convolutional Neural Network (BPT-CNN) model based on distributed computing is proposed to detect and classify colon cancer nuclei more accurately through the large-scale parallel deep learning (DL) algorithm …”
    Volltext
    Journal Article
  5. 5

    Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark on a Mesos Big Data Cloud Computing Software Framework for Mobile Robotic Intelligent Fault Recognition von Xian, Guangming

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm using fine-grained-mode Spark on a Mesos big …”
    Volltext
    Journal Article
  6. 6

    A revised deep reinforcement learning algorithm for parallel machine scheduling problem under multi-scenario due date constraints von Zhang, Weijian, Kong, Min, Zhang, Yajing, Fathollahi-Fard, Amir M., Tian, Guangdong

    ISSN: 2210-6502
    Veröffentlicht: Elsevier B.V 01.02.2025
    Veröffentlicht in Swarm and evolutionary computation (01.02.2025)
    “… •Proposing parallel machine scheduling problem in storage chip manufacturing under strong and weak due date constraints …”
    Volltext
    Journal Article
  7. 7

    A K-means-Teaching Learning based optimization algorithm for parallel machine scheduling problem von Li, Yibing, Liu, Jie, Wang, Lei, Liu, Jinfu, Tang, Hongtao, Guo, Jun, Xu, Wenxiang

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.08.2024
    Veröffentlicht in Applied soft computing (01.08.2024)
    “… A data mining method was proposed for industrial big data to solve the problem of large-scale parallel machines scheduling …”
    Volltext
    Journal Article
  8. 8

    Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing von Djafri, Laouni

    ISSN: 2514-9288, 2514-9318
    Veröffentlicht: Bingley Emerald Publishing Limited 23.08.2022
    Veröffentlicht in Data technologies and applications (23.08.2022)
    “… PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other …”
    Volltext
    Journal Article
  9. 9

    Exact and heuristic algorithms for parallel-machine scheduling with DeJong’s learning effect von Okołowski, Dariusz, Gawiejnowicz, Stanisław

    ISSN: 0360-8352
    Veröffentlicht: Elsevier Ltd 01.09.2010
    Veröffentlicht in Computers & industrial engineering (01.09.2010)
    “… We consider a parallel-machine scheduling problem with a learning effect and the makespan objective …”
    Volltext
    Journal Article
  10. 10

    Advanced Analytics in Smart Manufacturing: Anomaly Detection Using Machine Learning Algorithms and Parallel Machine Scheduling Using a Genetic Algorithm von He, Meiling

    ISBN: 9798762106016
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… Making good use of data processing technologies, such as machine learning and optimization algorithms, will significantly contribute to better quality control, automation, and job scheduling in Smart Manufacturing …”
    Volltext
    Dissertation
  11. 11

    Hadoop based Parallel Machine Learning Algorithms for Intrusion Detection System von Eswaran, Malathi, Balasubramanie, P., Jotheeswari, M.

    ISSN: 2278-3075, 2278-3075
    Veröffentlicht: 30.11.2019
    “… Choice Tree is another Machine Learning classifier which is likewise an administered learning model …”
    Volltext
    Journal Article
  12. 12

    Machine-Learning-Based Parallel Genetic Algorithms for Multi-Objective Optimization in Ultra-Reliable Low-Latency WSNs von Chang, Yuchao, Yuan, Xiaobing, LI, Baoqing, Niyato, Dusit, Al-Dhahir, Naofal

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… by applying machine learning techniques and genetic algorithms. Using the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means clustering …”
    Volltext
    Journal Article
  13. 13

    Incremental and Parallel Machine Learning Algorithms With Automated Learning Rate Adjustments von Hishinuma, Kazuhiro, Iiduka, Hideaki

    ISSN: 2296-9144, 2296-9144
    Veröffentlicht: Switzerland Frontiers Media S.A 27.08.2019
    Veröffentlicht in Frontiers in robotics and AI (27.08.2019)
    “… The existing machine learning algorithms for minimizing the convex function over a closed convex set suffer from slow convergence because their learning rates must be determined before running …”
    Volltext
    Journal Article
  14. 14

    A Parallel Multiclassification Algorithm for Big Data Using an Extreme Learning Machine von Duan, Mingxing, Li, Kenli, Liao, Xiangke, Li, Keqin

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.06.2018
    “… Although a parallel ELM (PELM) based on MapReduce to process large-scale data shows more efficient learning speed than identical ELM algorithms in a serial environment, some operations, such as intermediate results stored on disks …”
    Volltext
    Journal Article
  15. 15

    Reducing Execution Time of Pixel-Based Machine Learning Classification Algorithms Using Parallel Processing Concept von Aliaa Shaker Mahmoud, Mohammed Chachan Younis

    ISSN: 1815-4816, 2311-7990
    Veröffentlicht: Mosul University 17.09.2025
    “… Parallel processing is essential in machine learning to meet the computational requirements resulting from the complexity of algorithms and the size of the dataset, by taking advantage …”
    Volltext
    Journal Article
  16. 16

    Parallel Implementation of a Machine Learning Algorithm on GPU von Cuomo, Salvatore, De Michele, Pasquale, Di Nardo, Emanuel, Marcellino, Livia

    ISSN: 0885-7458, 1573-7640
    Veröffentlicht: New York Springer US 01.10.2018
    Veröffentlicht in International journal of parallel programming (01.10.2018)
    “… of the information itself and its potential. Machine learning explores the study and construction of algorithms that can learn from and make predictions on data …”
    Volltext
    Journal Article
  17. 17

    An evolution strategies-based reinforcement learning algorithm for multi-objective dynamic parallel machine scheduling problems von Chen, Yarong, Zhang, Junjie, Mumtaz, Jabir, Huang, Shenquan, Zhou, Shengwei

    ISSN: 2210-6502
    Veröffentlicht: Elsevier B.V 01.06.2025
    Veröffentlicht in Swarm and evolutionary computation (01.06.2025)
    “… •Proposed evolution strategies-based reinforcement learning algorithm.•A multi-agent system to generate scheduling policy for parallel machines …”
    Volltext
    Journal Article
  18. 18

    Parallel and Distributed Machine Learning Algorithms for Scalable Big Data Analytics von Bal, Henri, Pal, Arindam

    ISSN: 0167-739X
    Veröffentlicht: Elsevier B.V 01.07.2020
    Veröffentlicht in Future generation computer systems (01.07.2020)
    “… for Large Scale Machine Learning and Big Data Analytics (ParLearning 2017). In this editorial, we have given a high-level overview of the 4 papers contained …”
    Volltext
    Journal Article
  19. 19

    Novel decoupling algorithm based on parallel voltage extreme learning machine (PV-ELM) for six-axis F/M sensors von Liang, Qiaokang, Long, Jianyong, Coppola, Gianmarc, Zhang, Dan, Sun, Wei

    ISSN: 0736-5845, 1879-2537
    Veröffentlicht: Oxford Elsevier Ltd 01.06.2019
    Veröffentlicht in Robotics and computer-integrated manufacturing (01.06.2019)
    “… ), Support Vector Regression (SVR), BP Neural Network (BPNN), and Extreme Learning Machine (ELM) methods …”
    Volltext
    Journal Article
  20. 20

    Study on micro-parameters of parallel bond model based on machine learning algorithm von Du, Xiaotong, Liu, Wanrong, Peng, Chao, Huang, Bin, Xu, Congmin, Sun, Yulin, Cheng, Yudi

    ISSN: 2196-4378, 2196-4386
    Veröffentlicht: Cham Springer International Publishing 01.10.2025
    Veröffentlicht in Computational particle mechanics (01.10.2025)
    “… This paper employs the discrete element software PFC 2D in combination with four machine learning algorithms …”
    Volltext
    Journal Article