Suchergebnisse - Nonnegativity-constrained autoencoder

  • Treffer 1 - 8 von 8
Treffer weiter einschränken
  1. 1

    Driver identification based on hidden feature extraction by using adaptive nonnegativity-constrained autoencoder von Chen, Jie, Wu, ZhongCheng, Zhang, Jun

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.01.2019
    Veröffentlicht in Applied soft computing (01.01.2019)
    “… identification accuracy and long prediction time. We first propose using an unsupervised three-layer nonnegativity-constrained autoencoder to adaptive search the optimal size of the sliding window, then construct a deep nonnegativity-constrained …”
    Volltext
    Journal Article
  2. 2

    Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data von Chen, Jie, Wu, ZhongCheng, Zhang, Jun

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.12.2019
    “… In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction …”
    Volltext
    Journal Article
  3. 3

    Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder von Jiang, Qiuping, Shao, Feng, Lin, Weisi, Jiang, Gangyi

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.04.2018
    Veröffentlicht in Pattern recognition (01.04.2018)
    “… ) images based on deep nonnegativity constrained sparse autoencoder (DNCSAE). To address the quality issue of stereopairs whose perceived quality is not only …”
    Volltext
    Journal Article
  4. 4

    Milling tool condition monitoring for difficult-to-cut materials based on NCAE and IGWO-SVM von Wang, Siqi, Yan, Shichao, Sun, Yuwen

    ISSN: 0268-3768, 1433-3015
    Veröffentlicht: London Springer London 01.11.2023
    “… To handle this issue, this paper proposed a novel method for monitoring tool wear conditions based on the nonnegativity-constrained autoencoder (NCAE …”
    Volltext
    Journal Article
  5. 5

    Deep Learning of Nonnegativity-Constrained Autoencoders for Enhanced Understanding of Data von Ayinde, Babajide O, Zurada, Jacek M

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.12.2018
    Veröffentlicht in arXiv.org (25.12.2018)
    “… This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of Nonnegativity Constrained Autoencoder (NCSAE …”
    Volltext
    Paper
  6. 6

    Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints von Hosseini-Asl, Ehsan, Zurada, Jacek M., Nasraoui, Olfa

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.12.2016
    “… (nonnegativity-constrained autoencoder), that learns features that show part-based representation of data …”
    Volltext
    Journal Article
  7. 7

    Cross-covariance regularized autoencoders for nonredundant sparse feature representation von Chen, Jie, Wu, ZhongCheng, Zhang, Jun, Li, Fang, Li, WenJing, Wu, ZiHeng

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 17.11.2018
    Veröffentlicht in Neurocomputing (Amsterdam) (17.11.2018)
    “… Existing feature representation algorithms based on the sparse autoencoder and nonnegativity-constrained autoencoder tend to produce duplicative encoding and decoding receptive fields, which leads …”
    Volltext
    Journal Article
  8. 8

    Nonredundant sparse feature extraction using autoencoders with receptive fields clustering von Ayinde, Babajide O., Zurada, Jacek M.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.09.2017
    Veröffentlicht in Neural networks (01.09.2017)
    “… Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading …”
    Volltext
    Journal Article