Suchergebnisse - Multi-robot Reinforcement Learning
-
1
Safe multi-agent reinforcement learning for multi-robot control
ISSN: 0004-3702, 1872-7921Veröffentlicht: Elsevier B.V 01.06.2023Veröffentlicht in Artificial intelligence (01.06.2023)“… Yet, developing multi-robot control methods from the perspective of safe multi-agent reinforcement learning (MARL …”
Volltext
Journal Article -
2
Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
ISSN: 1424-8220, 1424-8220Veröffentlicht: Switzerland MDPI AG 30.03.2023Veröffentlicht in Sensors (Basel, Switzerland) (30.03.2023)“… objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi …”
Volltext
Journal Article -
3
Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit
ISSN: 2051-3305, 2051-3305Veröffentlicht: The Institution of Engineering and Technology 01.07.2020Veröffentlicht in Journal of engineering (Stevenage, England) (01.07.2020)“… This study the problem of multi-robot pursuit game using reinforcement learning (RL) techniques is studied …”
Volltext
Journal Article -
4
MRCDRL: Multi-robot coordination with deep reinforcement learning
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 17.09.2020Veröffentlicht in Neurocomputing (Amsterdam) (17.09.2020)“… This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL …”
Volltext
Journal Article -
5
Lyapunov-Informed Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks
ISSN: 1545-5955, 1558-3783Veröffentlicht: IEEE 2025Veröffentlicht in IEEE transactions on automation science and engineering (2025)“… Multi-Agent Reinforcement Learning (MARL) has shown great potential in solving complex tasks …”
Volltext
Journal Article -
6
Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks
ISSN: 2153-0866Veröffentlicht: IEEE 14.10.2024Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (14.10.2024)“… In multi-agent reinforcement learning (MARL), the Centralized Training with Decentralized Execution (CTDE …”
Volltext
Tagungsbericht -
7
Multi‐station multi‐robot task assignment method based on deep reinforcement learning
ISSN: 2468-2322, 2468-6557, 2468-2322Veröffentlicht: Beijing John Wiley & Sons, Inc 01.02.2025Veröffentlicht in CAAI Transactions on Intelligence Technology (01.02.2025)“… This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL …”
Volltext
Journal Article -
8
A Mixed-Reality-Augmented Deep Reinforcement Learning Approach for Multi-Robot Safe Motion Generation in Human-Robot Collaborative Manufacturing Cells
ISSN: 1545-5955, 1558-3783Veröffentlicht: IEEE 2025Veröffentlicht in IEEE transactions on automation science and engineering (2025)“… To address these issues, this paper introduces the Deep Reinforcement Learning (DRL) approach for end-to-end safe motion generation in human multi-robot collaborative workspaces …”
Volltext
Journal Article -
9
PD-FAC: Probability Density Factorized Multi-Agent Distributional Reinforcement Learning for Multi-Robot Reliable Search
ISSN: 2377-3766, 2377-3766Veröffentlicht: Piscataway IEEE 01.10.2022Veröffentlicht in IEEE robotics and automation letters (01.10.2022)“… This letter presents a new range of multi-robot search for a non-adversarial moving target problems, namely multi-robot reliable search (MuRRS …”
Volltext
Journal Article -
10
Reinforcement learning–based task allocation and path‐finding in multi‐robot systems under environment uncertainty
ISSN: 1093-9687, 1467-8667Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.09.2025Veröffentlicht in Computer-aided civil and infrastructure engineering (01.09.2025)“… Autonomous robots have the potential to significantly improve the operational efficiency of multi‐robot systems (MRSs …”
Volltext
Journal Article -
11
Multi-robot path planning based on a deep reinforcement learning DQN algorithm
ISSN: 2468-2322, 2468-6557, 2468-2322Veröffentlicht: Beijing The Institution of Engineering and Technology 01.09.2020Veröffentlicht in CAAI Transactions on Intelligence Technology (01.09.2020)“… to generate target Q-values to solve the problem of multi-robot path planning. The aim of the Q-learning algorithm in deep reinforcement learning is to address two shortcomings of the robot path-planning problem …”
Volltext
Journal Article -
12
From Agents to Robots: A Training and Evaluation Platform for Multi-robot Reinforcement Learning
ISSN: 2690-5965Veröffentlicht: IEEE 10.10.2024Veröffentlicht in Proceedings - International Conference on Parallel and Distributed Systems (10.10.2024)“… Multi-robot reinforcement learning (MRRL) is a promising approach to solving cooperation problems and has been widely adopted in many applications …”
Volltext
Tagungsbericht -
13
Behavioral control task supervisor with memory based on reinforcement learning for human—multi-robot coordination systems
ISSN: 2095-9184, 2095-9230Veröffentlicht: Hangzhou Zhejiang University Press 01.08.2022Veröffentlicht in Frontiers of information technology & electronic engineering (01.08.2022)“… In this study, a novel reinforcement learning task supervisor (RLTS) with memory in a behavioral control framework is proposed for human …”
Volltext
Journal Article -
14
Transformer-Based Reinforcement Learning for Multi-Robot Autonomous Exploration
ISSN: 1424-8220, 1424-8220Veröffentlicht: Switzerland MDPI AG 06.08.2024Veröffentlicht in Sensors (Basel, Switzerland) (06.08.2024)“… Our multi-agent deep reinforcement learning method includes a multi-agent learning method to effectively improve exploration efficiency …”
Volltext
Journal Article -
15
Decision Making for Multi-Robot Fixture Planning Using Multi-Agent Reinforcement Learning
ISSN: 1545-5955, 1558-3783Veröffentlicht: IEEE 2025Veröffentlicht in IEEE transactions on automation science and engineering (2025)“… In this paper, we present a framework for multi-agent reinforcement learning with team decision theory to find optimal fixturing plans for manufacturing tasks …”
Volltext
Journal Article -
16
MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models
ISSN: 2153-0866Veröffentlicht: IEEE 27.09.2021Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (27.09.2021)“… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample efficiency …”
Volltext
Tagungsbericht -
17
Heterogeneous Multi-Robot Cooperation With Asynchronous Multi-Agent Reinforcement Learning
ISSN: 2377-3766, 2377-3766Veröffentlicht: Piscataway IEEE 01.01.2024Veröffentlicht in IEEE robotics and automation letters (01.01.2024)“… In this letter, we introduce a novel architecture for multi-robot decision-making and control based on multi-agent reinforcement learning (MARL …”
Volltext
Journal Article -
18
Bayesian Reinforcement Learning for Multi-Robot Decentralized Patrolling in Uncertain Environments
ISSN: 0018-9545, 1939-9359Veröffentlicht: New York IEEE 01.12.2019Veröffentlicht in IEEE transactions on vehicular technology (01.12.2019)“… The use of such team of robots to perform well is a challenging problem. To address the challenge, a decentralized multi-robot patrolling problem in uncertain environments without prior knowledge is investigated in this paper …”
Volltext
Journal Article -
19
Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation
ISSN: 2153-0866Veröffentlicht: IEEE 27.09.2021Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (27.09.2021)“… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm …”
Volltext
Tagungsbericht -
20
Cooperative Multi-Robot Hierarchical Reinforcement Learning
ISSN: 2158-107X, 2156-5570Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2022Veröffentlicht in International journal of advanced computer science & applications (2022)“… Recent advances in multi-robot deep reinforcement learning have made it possible to perform efficient exploration in problem space, but it remains a significant challenge in many complex domains …”
Volltext
Journal Article