Suchergebnisse - Multi-robot Reinforcement Learning

  1. 1

    Safe multi-agent reinforcement learning for multi-robot control von Gu, Shangding, Grudzien Kuba, Jakub, Chen, Yuanpei, Du, Yali, Yang, Long, Knoll, Alois, Yang, Yaodong

    ISSN: 0004-3702, 1872-7921
    Veröffentlicht: Elsevier B.V 01.06.2023
    Veröffentlicht in Artificial intelligence (01.06.2023)
    “… Yet, developing multi-robot control methods from the perspective of safe multi-agent reinforcement learning (MARL …”
    Volltext
    Journal Article
  2. 2

    Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey von Orr, James, Dutta, Ayan

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 30.03.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (30.03.2023)
    “… objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi …”
    Volltext
    Journal Article
  3. 3

    Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit von Yu, Chao, Dong, Yinzhao, Li, Yangning, Chen, Yatong

    ISSN: 2051-3305, 2051-3305
    Veröffentlicht: The Institution of Engineering and Technology 01.07.2020
    Veröffentlicht in Journal of engineering (Stevenage, England) (01.07.2020)
    “… This study the problem of multi-robot pursuit game using reinforcement learning (RL) techniques is studied …”
    Volltext
    Journal Article
  4. 4

    MRCDRL: Multi-robot coordination with deep reinforcement learning von Wang, Di, Deng, Hongbin, Pan, Zhenhua

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 17.09.2020
    Veröffentlicht in Neurocomputing (Amsterdam) (17.09.2020)
    “… This paper proposes a multi-robot cooperative algorithm based on deep reinforcement learning (MRCDRL …”
    Volltext
    Journal Article
  5. 5

    Lyapunov-Informed Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks von Feng, Pu, Shi, Rongye, Wang, Size, Wu, Qizhen, Yu, Xin, Wu, Wenjun

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: IEEE 2025
    “… Multi-Agent Reinforcement Learning (MARL) has shown great potential in solving complex tasks …”
    Volltext
    Journal Article
  6. 6

    Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks von Feng, Pu, Liang, Junkang, Wang, Size, Yu, Xin, Ji, Xin, Chen, Yiting, Zhang, Kui, Shi, Rongye, Wu, Wenjun

    ISSN: 2153-0866
    Veröffentlicht: IEEE 14.10.2024
    “… In multi-agent reinforcement learning (MARL), the Centralized Training with Decentralized Execution (CTDE …”
    Volltext
    Tagungsbericht
  7. 7

    Multi‐station multirobot task assignment method based on deep reinforcement learning von Zhang, Junnan, Wang, Ke, Mu, Chaoxu

    ISSN: 2468-2322, 2468-6557, 2468-2322
    Veröffentlicht: Beijing John Wiley & Sons, Inc 01.02.2025
    Veröffentlicht in CAAI Transactions on Intelligence Technology (01.02.2025)
    “… This paper focuses on the problem of multi‐station multirobot spot welding task assignment, and proposes a deep reinforcement learning (DRL …”
    Volltext
    Journal Article
  8. 8

    A Mixed-Reality-Augmented Deep Reinforcement Learning Approach for Multi-Robot Safe Motion Generation in Human-Robot Collaborative Manufacturing Cells von Li, Chengxi, Yin, Yue, Ye, Hantao, Zheng, Pai, Gupta, Satyandra K.

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: IEEE 2025
    “… To address these issues, this paper introduces the Deep Reinforcement Learning (DRL) approach for end-to-end safe motion generation in human multi-robot collaborative workspaces …”
    Volltext
    Journal Article
  9. 9

    PD-FAC: Probability Density Factorized Multi-Agent Distributional Reinforcement Learning for Multi-Robot Reliable Search von Sheng, Wenda, Guo, Hongliang, Yau, Wei-Yun, Zhou, Yingjie

    ISSN: 2377-3766, 2377-3766
    Veröffentlicht: Piscataway IEEE 01.10.2022
    Veröffentlicht in IEEE robotics and automation letters (01.10.2022)
    “… This letter presents a new range of multi-robot search for a non-adversarial moving target problems, namely multi-robot reliable search (MuRRS …”
    Volltext
    Journal Article
  10. 10

    Reinforcement learning–based task allocation and path‐finding in multirobot systems under environment uncertainty von Huang, Songjun, Sun, Chuanneng, Gong, Jie, Pompili, Dario

    ISSN: 1093-9687, 1467-8667
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.09.2025
    Veröffentlicht in Computer-aided civil and infrastructure engineering (01.09.2025)
    “… Autonomous robots have the potential to significantly improve the operational efficiency of multirobot systems (MRSs …”
    Volltext
    Journal Article
  11. 11

    Multi-robot path planning based on a deep reinforcement learning DQN algorithm von Yang, Yang, Juntao, Li, Lingling, Peng

    ISSN: 2468-2322, 2468-6557, 2468-2322
    Veröffentlicht: Beijing The Institution of Engineering and Technology 01.09.2020
    Veröffentlicht in CAAI Transactions on Intelligence Technology (01.09.2020)
    “… to generate target Q-values to solve the problem of multi-robot path planning. The aim of the Q-learning algorithm in deep reinforcement learning is to address two shortcomings of the robot path-planning problem …”
    Volltext
    Journal Article
  12. 12

    From Agents to Robots: A Training and Evaluation Platform for Multi-robot Reinforcement Learning von Liang, Zhiuxan, Cao, Jiannong, Jiang, Shan, Saxena, Divya, Cao, Rui, Xu, Huafeng

    ISSN: 2690-5965
    Veröffentlicht: IEEE 10.10.2024
    “… Multi-robot reinforcement learning (MRRL) is a promising approach to solving cooperation problems and has been widely adopted in many applications …”
    Volltext
    Tagungsbericht
  13. 13

    Behavioral control task supervisor with memory based on reinforcement learning for human—multi-robot coordination systems von Huang, Jie, Mo, Zhibin, Zhang, Zhenyi, Chen, Yutao

    ISSN: 2095-9184, 2095-9230
    Veröffentlicht: Hangzhou Zhejiang University Press 01.08.2022
    “… In this study, a novel reinforcement learning task supervisor (RLTS) with memory in a behavioral control framework is proposed for human …”
    Volltext
    Journal Article
  14. 14

    Transformer-Based Reinforcement Learning for Multi-Robot Autonomous Exploration von Chen, Qihong, Wang, Rui, Lyu, Ming, Zhang, Jie

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 06.08.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (06.08.2024)
    “… Our multi-agent deep reinforcement learning method includes a multi-agent learning method to effectively improve exploration efficiency …”
    Volltext
    Journal Article
  15. 15

    Decision Making for Multi-Robot Fixture Planning Using Multi-Agent Reinforcement Learning von Canzini, Ethan, Auledas-Noguera, Marc, Pope, Simon, Tiwari, Ashutosh

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: IEEE 2025
    “… In this paper, we present a framework for multi-agent reinforcement learning with team decision theory to find optimal fixturing plans for manufacturing tasks …”
    Volltext
    Journal Article
  16. 16

    MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models von Willemsen, Daniel, Coppola, Mario, de Croon, Guido C.H.E.

    ISSN: 2153-0866
    Veröffentlicht: IEEE 27.09.2021
    “… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample efficiency …”
    Volltext
    Tagungsbericht
  17. 17

    Heterogeneous Multi-Robot Cooperation With Asynchronous Multi-Agent Reinforcement Learning von Zhang, Han, Zhang, Xiaohui, Feng, Zhao, Xiao, Xiaohui

    ISSN: 2377-3766, 2377-3766
    Veröffentlicht: Piscataway IEEE 01.01.2024
    Veröffentlicht in IEEE robotics and automation letters (01.01.2024)
    “… In this letter, we introduce a novel architecture for multi-robot decision-making and control based on multi-agent reinforcement learning (MARL …”
    Volltext
    Journal Article
  18. 18

    Bayesian Reinforcement Learning for Multi-Robot Decentralized Patrolling in Uncertain Environments von Zhou, Xin, Wang, Weiping, Wang, Tao, Lei, Yonglin, Zhong, Fangcheng

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.12.2019
    Veröffentlicht in IEEE transactions on vehicular technology (01.12.2019)
    “… The use of such team of robots to perform well is a challenging problem. To address the challenge, a decentralized multi-robot patrolling problem in uncertain environments without prior knowledge is investigated in this paper …”
    Volltext
    Journal Article
  19. 19

    Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation von Marchesini, Enrico, Farinelli, Alessandro

    ISSN: 2153-0866
    Veröffentlicht: IEEE 27.09.2021
    “… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm …”
    Volltext
    Tagungsbericht
  20. 20

    Cooperative Multi-Robot Hierarchical Reinforcement Learning von Setyawan, Gembong Edhi, Hartono, Pitoyo, Sawada, Hideyuki

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2022
    “… Recent advances in multi-robot deep reinforcement learning have made it possible to perform efficient exploration in problem space, but it remains a significant challenge in many complex domains …”
    Volltext
    Journal Article