Suchergebnisse - Modeling Energy Consumption in Deep Learning Architectures Using Power Laws

  1. 1

    Energy Regulation-Aware Layered Control Architecture for Building Energy Systems Using Constraint-Aware Deep Reinforcement Learning and Virtual Energy Storage Modeling von Li, Siwei, Tian, Congxiang, Abdalla, Ahmed N.

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.09.2025
    Veröffentlicht in Energies (Basel) (01.09.2025)
    “… Traditional centralized or flat deep reinforcement learning (DRL) methods often fail to effectively handle the multi-timescale dynamics, large state …”
    Volltext
    Journal Article
  2. 2

    Energy Consumption Modelling Using Deep Learning Technique — A Case Study of EAF von Chen, Chong, Liu, Ying, Kumar, Maneesh, Qin, Jian

    ISSN: 2212-8271, 2212-8271
    Veröffentlicht: Elsevier B.V 2018
    Veröffentlicht in Procedia CIRP (2018)
    “… Energy consumption is a global issue which government is taking measures to reduce …”
    Volltext
    Journal Article
  3. 3

    Energy consumption modelling using deep learning embedded semi-supervised learning von Chen, Chong, Liu, Ying, Kumar, Maneesh, Qin, Jian, Ren, Yunxia

    ISSN: 0360-8352, 1879-0550
    Veröffentlicht: Elsevier Ltd 01.09.2019
    Veröffentlicht in Computers & industrial engineering (01.09.2019)
    “… •It is used for energy consumption modelling when labelled energy data is limited.•A case study using real-world Electric Arc Furnace data has shown its merits …”
    Volltext
    Journal Article
  4. 4

    Predictive Modeling of Energy Consumption for Building Automation Systems Using Deep Learning von Sivasankari, N., Rathika, P.

    Veröffentlicht: IEEE 14.03.2024
    “… In the realm of building automation systems, efficient energy consumption modeling stands as a crucial element for sustainable and intelligent environments …”
    Volltext
    Tagungsbericht
  5. 5

    Optimization of the energy consumption in activated sludge process using deep learning selective modeling von Oulebsir, Rafik, Lefkir, Abdelouahab, Safri, Abdelhamid, Bermad, Abdelmalek

    ISSN: 0961-9534, 1873-2909
    Veröffentlicht: Elsevier Ltd 01.01.2020
    Veröffentlicht in Biomass & bioenergy (01.01.2020)
    “… This method consists of selecting the data that represent the best energy consumption using different performance criteria then use this data to train a deep neural network …”
    Volltext
    Journal Article
  6. 6

    Energy Consumption Modeling and Optimization of UAV-Assisted MEC Networks Using Deep Reinforcement Learning von Yan, Ming, Zhang, Litong, Jiang, Wei, Chan, Chien Aun, Gygax, Andre F., Nirmalathas, Ampalavanapillai

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 15.04.2024
    Veröffentlicht in IEEE sensors journal (15.04.2024)
    “… The optimization of the network energy consumption in the relevant scenarios is essential for the whole system performance due to the constrained energy capacity of UAVs …”
    Volltext
    Journal Article
  7. 7

    Modeling and effect analysis of machining parameters for surface roughness and specific energy consumption during TC18 machining using deep reinforcement learning and neural networks von Lu, Juan, Mu, Huailong, Ouyang, Haibin, Zhang, Zhenkun, Ding, Weiping

    ISSN: 1573-7462, 0269-2821, 1573-7462
    Veröffentlicht: Dordrecht Springer Netherlands 11.04.2025
    Veröffentlicht in The Artificial intelligence review (11.04.2025)
    “… Against this background, this paper presents the method of modeling and effect analysis for surface roughness and specific energy consumption during TC18 machining using Deep Reinforcement Learning and Neural Networks …”
    Volltext
    Journal Article
  8. 8

    Deep Learning-Based Energy Consumption Modeling in Smart Buildings von Hamyd, Raed, Saroha, Surbhi

    Veröffentlicht: IEEE 08.08.2025
    “… Energy consumption modelling has become increasingly important with the proliferation of smart buildings …”
    Volltext
    Tagungsbericht
  9. 9

    Deep learning approach to energy consumption modeling in wastewater pumping systems von Piri, Jamshid, Masoudi, Babak, Haghighi, Mohammad Salkhordeh, Kisi, Ozgur

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 12.11.2025
    Veröffentlicht in Scientific reports (12.11.2025)
    “… A novel deep learning approach combining ResNet, self-attention mechanisms, and Grey Wolf Optimizer is developed for wastewater pumping energy optimization …”
    Volltext
    Journal Article
  10. 10

    Sequence-to-sequence deep learning model for building energy consumption prediction with dynamic simulation modeling von Kim, Chul Ho, Kim, Marie, Song, Yu Jin

    ISSN: 2352-7102, 2352-7102
    Veröffentlicht: Elsevier Ltd 01.11.2021
    Veröffentlicht in Journal of Building Engineering (01.11.2021)
    “… Building energy simulation used actual weather data and generated occupancy data. The occupancy, lighting, and equipment schedules for each zone were generated in 5-min intervals using the Lawrence Berkeley National Laboratory occupancy simulator …”
    Volltext
    Journal Article
  11. 11

    An agent-based modeling approach combined with deep learning method in simulating household energy consumption von Tian, Shanjun, Lu, Yi, Ge, Xinting, Zheng, Yuanjie

    ISSN: 2352-7102, 2352-7102
    Veröffentlicht: Elsevier Ltd 01.11.2021
    Veröffentlicht in Journal of Building Engineering (01.11.2021)
    “… ) from the micro-level entities (such as devices), and deep learning models were conducted and embedded in to predict the household energy consumption behaviors with factors as inputs and behavior parameters as outputs, meanwhile …”
    Volltext
    Journal Article
  12. 12

    Energy consumption and carbon emission modeling and forecasting study with novel deep learning methods von Ma, Xiang, Wang, Jian, Huang, Jing, Ke, Yan

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 25.09.2025
    Veröffentlicht in Expert systems with applications (25.09.2025)
    “… Accurately predicting building energy consumption and carbon emissions is essential for developing and maintaining a sustainable environment …”
    Volltext
    Journal Article
  13. 13

    Deep learning-based energy efficiency and power consumption modeling for optical massive MIMO systems von Salama, Wessam M., Aly, Moustafa H., Amer, Eman S.

    ISSN: 0306-8919, 1572-817X
    Veröffentlicht: New York Springer US 01.06.2023
    Veröffentlicht in Optical and quantum electronics (01.06.2023)
    “… ). EE refers to one of the easiest and most cost-effective ways to combat climate change, reduce energy costs for consumers, and improve the competitiveness of businesses. Deep Learning (DL …”
    Volltext
    Journal Article
  14. 14

    Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method von Xu, Chengliang, Chen, Huanxin

    ISSN: 0140-7007, 1879-2081
    Veröffentlicht: Paris Elsevier Ltd 01.06.2020
    Veröffentlicht in International journal of refrigeration (01.06.2020)
    “… The system energy consumption is predicted using mode decomposition based LSTM algorithm, and the difference between predicted value and actual value is used to detect the abnormal system energy consumption by Grubbs’ test …”
    Volltext
    Journal Article
  15. 15

    Modeling Energy Consumption Using Machine Learning von Sarswatula, Sai Aravind, Pugh, Tanna, Prabhu, Vittaldas

    ISSN: 2813-0359, 2813-0359
    Veröffentlicht: 22.07.2022
    Veröffentlicht in Frontiers in Manufacturing Technology (22.07.2022)
    “… We developed predictive models for energy consumption using machine learning techniques such as Multiple Linear Regression, Random Forest Regressor, Decision Tree Regressor, and Extreme Gradient Boost Regressor …”
    Volltext
    Journal Article
  16. 16

    Prediction of urban water consumption using AI-based multiple modeling based on deep learning von Sadeghi, H., Sadeghfam, S., Sharafati, A., Seyfari, Y.

    ISSN: 1735-1472, 1735-2630
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 04.12.2025
    “… This study applies the inclusive multiple modeling using deep learning models, implemented in MATLAB, to improve prediction robustness in the Mahabad water distribution network in West Azerbaijan Province, Iran …”
    Volltext
    Journal Article
  17. 17

    Adaptive Model for Dynamic and Temporal Topic Modeling from Big Data using Deep Learning Architecture von Pathak, Ajeet Ram, Pandey, Manjusha, Rautaray, Siddharth

    ISSN: 2074-904X, 2074-9058
    Veröffentlicht: Hong Kong Modern Education and Computer Science Press 08.06.2019
    “… This paper proposes an adaptive framework for dynamic topic modeling from big data using deep learning approach …”
    Volltext
    Journal Article
  18. 18

    Harnessing Deep Learning for Enhanced Energy Consumption Forecasting in smart Home: A comparative Study of MLP and RNN Architectures von Sarah, Younsi, Rabea, Guedouani, Amirouche, Nait Seghir

    Veröffentlicht: IEEE 06.05.2025
    “… The major motivation of this paper is to provide deep learning-based advanced models that would enable the forecasting of household energy consumption with regard to different weather factors …”
    Volltext
    Tagungsbericht
  19. 19

    Towards an Energy Consumption Index for Deep Learning Models: A Comparative Analysis of Architectures, GPUs, and Measurement Tools von Aquino-Brítez, Sergio, García-Sánchez, Pablo, Ortiz, Andrés, Aquino-Brítez, Diego

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 30.01.2025
    Veröffentlicht in Sensors (Basel, Switzerland) (30.01.2025)
    “… This study introduces a newly developed energy consumption index that evaluates the energy efficiency of Deep Learning (DL …”
    Volltext
    Journal Article
  20. 20

    Modelling the functional dependency between root and shoot compartments to predict the impact of the environment on the architecture of the whole plant: methodology for model fitting on simulated data using Deep Learning techniques von Masson, Abel Louis, Caraglio, Yves, Nicolini, Eric, Borianne, Philippe, Barczi, Jean-Francois

    ISSN: 2517-5025, 2517-5025
    Veröffentlicht: UK Oxford University Press 01.01.2022
    Veröffentlicht in in silico plants (01.01.2022)
    “… Abstract Tree structural and biomass growth studies mainly focus on the shoot compartment. Tree roots usually have to be taken apart due to the difficulties …”
    Volltext
    Journal Article