Suchergebnisse - Model-constrained autoencoder

  1. 1

    TAEN: a model-constrained Tikhonov autoencoder network for forward and inverse problems von Van Nguyen, Hai, Bui-Thanh, Tan, Dawson, Clint

    ISSN: 0045-7825
    Veröffentlicht: Elsevier B.V 01.11.2025
    “… We propose a novel model-constrained Tikhonov autoencoder neural network framework, called TAEN, capable of learning both forward and inverse surrogate models using a single arbitrary observational sample …”
    Volltext
    Journal Article
  2. 2

    TAE: A Model-Constrained Tikhonov Autoencoder Approach for Forward and Inverse Problems von Nguyen, Hai V, Bui-Thanh, Tan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.12.2024
    Veröffentlicht in arXiv.org (09.12.2024)
    “… We propose a novel Tikhonov autoencoder model-constrained framework, called TAE, capable of learning both forward and inverse surrogate models using a single arbitrary observation sample …”
    Volltext
    Paper
  3. 3

    Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution von Gao, Lianru, Li, Jiaxin, Zheng, Ke, Jia, Xiuping

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2023
    “… ) to realize MS-aided HS-SR. First, two coupled autoencoders serve as the backbone of EU2ADL network to simultaneously decompose input modalities into abundances and corresponding endmembers, whose encoder part is composed …”
    Volltext
    Journal Article
  4. 4

    Selecting Observationally Constrained Global Climate Model Ensembles Using Autoencoders and Transfer Learning von Ibebuchi, Chibuike Chiedozie, Akinyemi, Oluwaferanmi, Abu, Itohan‐Osa

    ISSN: 2993-5210, 2993-5210
    Veröffentlicht: Wiley 01.03.2025
    “… In this study, we present a novel approach utilizing autoencoder neural networks (AEs) combined with transfer learning to evaluate the representation of monthly sea level pressure (SLP …”
    Volltext
    Journal Article
  5. 5

    Embedding Consensus Autoencoder for Cross-modal Semantic Analysis von Sun, Sheng-Zi, Guo, Bing-Hui, Yang, Xiao-Bo

    ISSN: 1002-137X
    Veröffentlicht: Chongqing Guojia Kexue Jishu Bu 01.01.2021
    Veröffentlicht in Ji suan ji ke xue (01.01.2021)
    “… data.In this work, an Embedding Consensus Autoencoder for Cross-Modal Semantic Analysis is proposed, which maps the original data to a low-dimensional shared space to retain semantic …”
    Volltext
    Journal Article
  6. 6

    Dictionary trained attention constrained low rank and sparse autoencoder for hyperspectral anomaly detection von Hu, Xing, Li, Zhixuan, Luo, Lingkun, Karimi, Hamid Reza, Zhang, Dawei

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.01.2025
    Veröffentlicht in Neural networks (01.01.2025)
    “… •Proposing an attention constrained low-rank and sparse autoencoder for hyperspectral anomaly detection …”
    Volltext
    Journal Article
  7. 7

    Generative adversarial network constrained multiple loss autoencoder: A deep learning‐based individual atrophy detection for Alzheimer's disease and mild cognitive impairment von Shi, Rong, Sheng, Can, Jin, Shichen, Zhang, Qi, Zhang, Shuoyan, Zhang, Liang, Ding, Changchang, Wang, Luyao, Wang, Lei, Han, Ying, Jiang, Jiehui

    ISSN: 1065-9471, 1097-0193, 1097-0193
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.02.2023
    Veröffentlicht in Human brain mapping (15.02.2023)
    “… Here, we proposed a framework called generative adversarial network constrained multiple loss autoencoder (GANCMLAE …”
    Volltext
    Journal Article
  8. 8

    TCL: Time-Dependent Clustering Loss for Optimizing Post-Training Feature Map Quantization for Partitioned DNNs von Berg, Oscar Artur Bernd, Saqib, Eiraj, Jantsch, Axel, Shallari, Irida, Krug, Silvia, Sanchez Leal, Isaac, O'Nils, Mattias

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE access (2025)
    “… This paper introduces an enhanced approach for deploying deep learning models on resource-constrained IoT devices by combining model partitioning, autoencoder-based compression, quantization with Time …”
    Volltext
    Journal Article
  9. 9

    Physics-constrained scheme for outlier removal in wind turbine SCADA data for power curve modeling von Hong, Hoang Si, Hue, Nguyen Thi, Ninh, Nguyen Tuan, Thuan, Nguyen Duc, Huong, Nguyen Thi Lan

    ISSN: 0378-7796
    Veröffentlicht: Elsevier B.V 01.11.2025
    Veröffentlicht in Electric power systems research (01.11.2025)
    “… •The approach integrates density-based clustering and a physics-constrained autoencoder.•A physics-constrained loss function is employed to enhance model reliability and interpretability …”
    Volltext
    Journal Article
  10. 10

    Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset von Sharmila, B S, Nagapadma, Rohini

    ISSN: 2523-3246, 2523-3246
    Veröffentlicht: Singapore Springer Nature Singapore 01.12.2023
    Veröffentlicht in Cybersecurity (Singapore) (01.12.2023)
    “… The deployment of the unsupervised autoencoder model is computationally expensive in resource-constrained edge devices …”
    Volltext
    Journal Article
  11. 11

    Real-time temperature anomaly detection in vaccine refrigeration systems using deep learning on a resource-constrained microcontroller von Harrabi, Mokhtar, Hamdi, Abdelaziz, Ouni, Bouraoui, Bel Hadj Tahar, Jamel

    ISSN: 2624-8212, 2624-8212
    Veröffentlicht: Switzerland Frontiers Media S.A 01.08.2024
    Veröffentlicht in Frontiers in artificial intelligence (01.08.2024)
    “… Our system utilizes a semi-supervised Convolutional Autoencoder (CAE) model deployed on a resource-constrained ESP32 microcontroller …”
    Volltext
    Journal Article
  12. 12

    Day-to-day dynamic origin–destination flow estimation using connected vehicle trajectories and automatic vehicle identification data von Cao, Yumin, Tang, Keshuang, Sun, Jian, Ji, Yangbeibei

    ISSN: 0968-090X, 1879-2359
    Veröffentlicht: Elsevier Ltd 01.08.2021
    “… •A novel methodology for recovering day-to-day dynamic OD flow.•Fusion of CV trajectories and AVI observations.•Obtaining prior OD flows by addressing …”
    Volltext
    Journal Article
  13. 13

    Channel-Wise Autoregressive Entropy Models for Learned Image Compression von Minnen, David, Singh, Saurabh

    ISSN: 2381-8549
    Veröffentlicht: IEEE 01.10.2020
    “… Currently, the most effective learned image codecs take the form of an entropy-constrained autoencoder with an entropy model that uses both forward and backward adaptation …”
    Volltext
    Tagungsbericht
  14. 14

    Hierarchical Constrained Variational Autoencoder for interaction-sparse recommendations von Li, Nuo, Guo, Bin, Liu, Yan, Ding, Yasan, Yao, Lina, Fan, Xiaopeng, Yu, Zhiwen

    ISSN: 0306-4573, 1873-5371
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Information processing & management (01.05.2024)
    “… hybrid (Variational Autoencoder) VAE method reports the optimal performance with the advantages of non-linear modeling and comprehensive integration …”
    Volltext
    Journal Article
  15. 15

    A novel constrained dense convolutional autoencoder and DNN-based semi-supervised method for shield machine tunnel geological formation recognition von Yu, Honggan, Tao, Jianfeng, Qin, Chengjin, Liu, Mingyang, Xiao, Dengyu, Sun, Hao, Liu, Chengliang

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Berlin Elsevier Ltd 15.02.2022
    Veröffentlicht in Mechanical systems and signal processing (15.02.2022)
    “… •A machine parameter selection scheme for the shield machine is put forward.•A novel semi-supervised framework for recognizing geological conditions is …”
    Volltext
    Journal Article
  16. 16

    An unsupervised region of interest extraction model for tau PET images and its application in the diagnosis of Alzheimer's disease von Shi, Rong, Wang, Luyao, Jiang, Jiehui

    ISSN: 2694-0604, 2694-0604
    Veröffentlicht: IEEE 01.01.2022
    “… In this study, we proposed a novel deep learning model; called generative adversarial networks constrained multiple loss autoencoder for tau (GANCMLAE4TAU …”
    Volltext
    Tagungsbericht Journal Article
  17. 17

    Constrained generative model applied to face detection von Feraud, Raphael, Bernier, Olivier, Collobert, Daniel

    ISSN: 1370-4621
    Veröffentlicht: 1997
    Veröffentlicht in Neural processing letters (1997)
    “… A generative neural network model, constrained by non-face examples chosen by an iterative algorithm, is applied to face detection …”
    Volltext
    Journal Article
  18. 18

    Industrial Process Soft Sensing Based on Bidirectional Optimization Learning of Data Augmentation and Prediction Models Under Limited Data von Li, He, Wang, Zhaojing, Li, Li, Yan, Xiaoyun, Hu, Xinrong, Li, Lijun

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.01.2025
    “… ). Considering that the generated samples must adhere to specific distribution characteristics and maintain the relationship between feature and target variables, a regression-constrained autoencoder (R-CAE …”
    Volltext
    Journal Article
  19. 19

    Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils von Xie, Hairun, Wang, Jing, Zhang, Miao

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.02.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.02.2024)
    “… Soft-constrained scheme: a Conditional Variational Autoencoder-based model that directly incorporates geometric constraints as part of the network. 2 …”
    Volltext
    Journal Article
  20. 20

    Separation of Metabolites and Macromolecules for Short-TE 1H-MRSI Using Learned Component-Specific Representations von Li, Yahang, Wang, Zepeng, Sun, Ruoyu, Lam, Fan

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: New York IEEE 01.04.2021
    Veröffentlicht in IEEE transactions on medical imaging (01.04.2021)
    “… Specifically, a mixed unsupervised and supervised learning-based strategy was developed to learn the metabolite and MM-specific low-dimensional representations using deep autoencoders …”
    Volltext
    Journal Article