Suchergebnisse - Malicious JavaScript detection
Andere Suchmöglichkeiten:
- Malicious JavaScript detection »
-
1
Taylor–HHO algorithm: A hybrid optimization algorithm with deep long short‐term for malicious JavaScript detection
ISSN: 0884-8173, 1098-111XVeröffentlicht: New York John Wiley & Sons, Inc 01.12.2021Veröffentlicht in International journal of intelligent systems (01.12.2021)“… The malicious script, like, JavaScript, is a major threat to computer networks in terms of network security …”
Volltext
Journal Article -
2
ZipAST: Enhancing malicious JavaScript detection with sequence compression
ISSN: 0167-4048Veröffentlicht: Elsevier Ltd 01.06.2025Veröffentlicht in Computers & security (01.06.2025)“… With the advancements in deep learning technologies, deep learning networks have shown the ability to automatically learn strong feature representations from malicious JavaScript …”
Volltext
Journal Article -
3
JSContana: Malicious JavaScript detection using adaptable context analysis and key feature extraction
ISSN: 0167-4048, 1872-6208Veröffentlicht: Elsevier Ltd 01.05.2021Veröffentlicht in Computers & security (01.05.2021)“… Although malicious JavaScript detection methods are becoming increasingly effective, the existing methods based on feature matching or static word embeddings are difficult to detect different …”
Volltext
Journal Article -
4
JStrong: Malicious JavaScript detection based on code semantic representation and graph neural network
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.07.2022Veröffentlicht in Computers & security (01.07.2022)“… However, the attacker uses the dynamic characteristics of the JavaScript language to embed malicious code into web pages to achieve the purpose of smuggling, redirection, and so on …”
Volltext
Journal Article -
5
Research on Malicious JavaScript Detection Technology Based on LSTM
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2018Veröffentlicht in IEEE access (2018)“… By analyzing the existing researches on malicious JavaScript detection, a malicious JavaScript detection model based on LSTM …”
Volltext
Journal Article -
6
Malicious JavaScript Detection Based on Bidirectional LSTM Model
ISSN: 2076-3417, 2076-3417Veröffentlicht: Basel MDPI AG 01.05.2020Veröffentlicht in Applied sciences (01.05.2020)“… To solve this problem, many learning-based methods for malicious JavaScript detection are being explored …”
Volltext
Journal Article -
7
Detecting malicious JavaScript code based on semantic analysis
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.06.2020Veröffentlicht in Computers & security (01.06.2020)“… However, attackers use the dynamics feature of JavaScript language to embed malicious code into web pages for the purpose of drive-by-download, redirection, etc …”
Volltext
Journal Article -
8
Spider bird swarm algorithm with deep belief network for malicious JavaScript detection
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.08.2021Veröffentlicht in Computers & security (01.08.2021)“… ) algorithm for malicious JavaScript detection. The proposed S-BSA is designed by the integration of Spider Monkey Optimization (SMO …”
Volltext
Journal Article -
9
Detection of Obfuscated Malicious JavaScript Code
ISSN: 1999-5903, 1999-5903Veröffentlicht: Basel MDPI AG 01.08.2022Veröffentlicht in Future internet (01.08.2022)“… To secure Internet users, an adequate intrusion-detection system (IDS) for malicious JavaScript must be developed …”
Volltext
Journal Article -
10
JACLNet:Application of adaptive code length network in JavaScript malicious code detection
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 14.12.2022Veröffentlicht in PloS one (14.12.2022)“… Currently, JavaScript malicious code detection methods are becoming more and more …”
Volltext
Journal Article -
11
TransAST: A Machine Translation-Based Approach for Obfuscated Malicious JavaScript Detection
ISSN: 2158-3927Veröffentlicht: IEEE 01.01.2023Veröffentlicht in Proceedings - International Conference on Dependable Systems and Networks (01.01.2023)“… As an essential part of the website, JavaScript greatly enriches its functions. At the same time, JavaScript has become the most common attack payload on malicious website …”
Volltext
Tagungsbericht -
12
ScriptNet: Neural Static Analysis for Malicious JavaScript Detection
ISSN: 2155-7586Veröffentlicht: IEEE 01.11.2019Veröffentlicht in MILCOM IEEE Military Communications Conference (01.11.2019)“… For internet-scale processing, static analysis offers substantial computing efficiencies. We propose the ScriptNet system for neural malicious JavaScript detection which is based on static analysis …”
Volltext
Tagungsbericht -
13
Detection of malicious javascript on an imbalanced dataset
ISSN: 2542-6605, 2542-6605Veröffentlicht: Elsevier B.V 01.03.2021Veröffentlicht in Internet of things (Amsterdam. Online) (01.03.2021)“… In order to be able to detect new malicious JavaScript with low cost, methods with machine learning techniques have been proposed and gave positive results …”
Volltext
Journal Article -
14
An Approach for Malicious JavaScript Detection Using Adaptive Taylor Harris Hawks Optimization-Based Deep Convolutional Neural Network
ISSN: 1947-3532, 1947-3540Veröffentlicht: IGI Global 20.05.2022Veröffentlicht in International journal of distributed systems and technologies (20.05.2022)“… This paper devises a novel technique for detecting malicious JavaScript. Here, JavaScript codes are fed to the feature extraction phase for extracting the noteworthy …”
Volltext
Journal Article -
15
Detecting Malicious JavaScript Using Structure-Based Analysis of Graph Representation
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2023Veröffentlicht in IEEE Access (2023)“… Malicious JavaScript code in web applications poses a significant threat as cyber attackers exploit it to perform various malicious activities …”
Volltext
Journal Article -
16
A machine learning approach to detection of JavaScript-based attacks using AST features and paragraph vectors
ISSN: 1568-4946, 1872-9681Veröffentlicht: Elsevier B.V 01.11.2019Veröffentlicht in Applied soft computing (01.11.2019)“… Most of these websites use JavaScript (JS) to create dynamic content. The exploitation of vulnerabilities in servers, plugins, and other third-party systems enables the insertion of malicious codes into website …”
Volltext
Journal Article -
17
Malicious JavaScript Code Detection Based on Hybrid Analysis
ISSN: 2640-0715Veröffentlicht: IEEE 01.12.2018Veröffentlicht in 2018 25th Asia-Pacific Software Engineering Conference (APSEC) (01.12.2018)“… However, since the heavy use of obfuscation techniques, many methods no longer apply to malicious JavaScript code detection, and it has been a huge challenge to de-obfuscate obfuscated malicious Java …”
Volltext
Tagungsbericht -
18
Adaptive Spider Bird Swarm Algorithm-Based Deep Recurrent Neural Network for Malicious JavaScript Detection Using Box-Cox Transformation
ISSN: 1942-3926, 1942-3934Veröffentlicht: Hershey IGI Global 01.10.2020Veröffentlicht in International journal of open source software & processes (01.10.2020)“… ) is proposed for detecting the malicious JavaScript codes in web applications. However, the proposed adaptive SBSA is designed by integrating the adaptive concept with the bird swarm algorithm (BSA …”
Volltext
Journal Article -
19
Detecting Malicious Javascript in PDF through Document Instrumentation
ISSN: 1530-0889Veröffentlicht: IEEE 01.06.2014Veröffentlicht in Proceedings - International Conference on Dependable Systems and Networks (01.06.2014)“… In this paper, we propose a context-aware approach for detection and confinement of malicious Javascript in PDF …”
Volltext
Tagungsbericht -
20
Malicious JavaScript Detection by Features Extraction
ISSN: 1897-7979, 2084-4840Veröffentlicht: Wroclaw University of Science and Technology 01.06.2015Veröffentlicht in E-informatica : software engineering journal (01.06.2015)“… Existing techniques for detecting malicious JavaScripts could fail for different reasons …”
Volltext
Journal Article