Suchergebnisse - Malicious JavaScript code detection
Andere Suchmöglichkeiten:
- Malicious JavaScript code detection »
-
1
JACLNet:Application of adaptive code length network in JavaScript malicious code detection
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 14.12.2022Veröffentlicht in PloS one (14.12.2022)“… Currently, JavaScript malicious code detection methods are becoming more and more …”
Volltext
Journal Article -
2
Detecting malicious JavaScript code based on semantic analysis
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.06.2020Veröffentlicht in Computers & security (01.06.2020)“… However, attackers use the dynamics feature of JavaScript language to embed malicious code into web pages for the purpose of drive-by-download, redirection, etc …”
Volltext
Journal Article -
3
Detection of Obfuscated Malicious JavaScript Code
ISSN: 1999-5903, 1999-5903Veröffentlicht: Basel MDPI AG 01.08.2022Veröffentlicht in Future internet (01.08.2022)“… Websites on the Internet are becoming increasingly vulnerable to malicious JavaScript code because of its strong impact and dramatic effect …”
Volltext
Journal Article -
4
Malicious JavaScript Code Detection Based on Hybrid Analysis
ISSN: 2640-0715Veröffentlicht: IEEE 01.12.2018Veröffentlicht in 2018 25th Asia-Pacific Software Engineering Conference (APSEC) (01.12.2018)“… However, since the heavy use of obfuscation techniques, many methods no longer apply to malicious JavaScript code detection, and it has been a huge challenge to de-obfuscate obfuscated malicious Java …”
Volltext
Tagungsbericht -
5
JStrong: Malicious JavaScript detection based on code semantic representation and graph neural network
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.07.2022Veröffentlicht in Computers & security (01.07.2022)“… However, the attacker uses the dynamic characteristics of the JavaScript language to embed malicious code into web pages to achieve the purpose of smuggling, redirection, and so on …”
Volltext
Journal Article -
6
MOJI: Character-level convolutional neural networks for Malicious Obfuscated JavaScript Inspection
ISSN: 1568-4946, 1872-9681Veröffentlicht: Elsevier B.V 01.04.2023Veröffentlicht in Applied soft computing (01.04.2023)“… Many malicious JavaScript detection methods perform code abstraction and prior feature extraction to uncover the functionality hidden by obfuscation …”
Volltext
Journal Article -
7
Detection Approach of Malicious JavaScript Code Based on deep learning
Veröffentlicht: IEEE 26.05.2023Veröffentlicht in 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA) (26.05.2023)“… Traditional machine learning methods for detecting JavaScript malicious code have the problems of complex feature extraction process, extensive computation, and difficult detection due to malicious …”
Volltext
Tagungsbericht -
8
Detecting Malicious JavaScript Using Structure-Based Analysis of Graph Representation
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2023Veröffentlicht in IEEE Access (2023)“… Malicious JavaScript code in web applications poses a significant threat as cyber attackers exploit it to perform various malicious activities …”
Volltext
Journal Article -
9
Behavior Analysis Usage with Behavior Tures Adoption for Malicious Code Detection on JAVASCRIPT Scenarios Example
ISSN: 2074-7128, 2074-7136Veröffentlicht: Joint Stock Company "Experimental Scientific and Production Association SPELS 01.03.2010Veröffentlicht in Bezopasnostʹ informat͡s︡ionnykh tekhnologiĭ (01.03.2010)“… The article offers the method of malicious JavaScript code detection, based on behavior analysis …”
Volltext
Journal Article -
10
AMA: Static Code Analysis of Web Page for the Detection of Malicious Scripts
ISSN: 1877-0509, 1877-0509Veröffentlicht: Elsevier B.V 2016Veröffentlicht in Procedia computer science (2016)“… like Vigenere, Caesar and Atbash. The malicious iframes are injected to the websites using JavaScript and are also made hidden from the users perspective in-order to prevent detection …”
Volltext
Journal Article -
11
Detecting malicious JavaScript code in Mozilla
ISBN: 076952284X, 9780769522845Veröffentlicht: IEEE 2005Veröffentlicht in ICECCS 2005: 10th IEEE International Conference on Engineering of Complex Computer Systems (16-20 June 2005/Shanghai, China) (2005)“… ). We propose an approach to solve this problem that is based on monitoring JavaScript code execution and comparing the execution to high-level policies, to detect malicious code behavior …”
Volltext
Tagungsbericht -
12
ZipAST: Enhancing malicious JavaScript detection with sequence compression
ISSN: 0167-4048Veröffentlicht: Elsevier Ltd 01.06.2025Veröffentlicht in Computers & security (01.06.2025)“… Presently, mainstream detection methods usually extract the Abstract Syntax Tree (AST) from JavaScript code, which captures …”
Volltext
Journal Article -
13
An Approach for Malicious JavaScript Detection Using Adaptive Taylor Harris Hawks Optimization-Based Deep Convolutional Neural Network
ISSN: 1947-3532, 1947-3540Veröffentlicht: IGI Global 20.05.2022Veröffentlicht in International journal of distributed systems and technologies (20.05.2022)“… This paper devises a novel technique for detecting malicious JavaScript. Here, JavaScript codes are fed to the feature extraction phase for extracting the noteworthy …”
Volltext
Journal Article -
14
Deobfuscation, unpacking, and decoding of obfuscated malicious JavaScript for machine learning models detection performance improvement
ISSN: 2468-2322, 2468-6557, 2468-2322Veröffentlicht: Beijing The Institution of Engineering and Technology 01.09.2020Veröffentlicht in CAAI Transactions on Intelligence Technology (01.09.2020)“… Obfuscation is rampant in both benign and malicious JavaScript (JS) codes. It generates an obscure and undetectable code that hinders comprehension and analysis …”
Volltext
Journal Article -
15
Spider bird swarm algorithm with deep belief network for malicious JavaScript detection
ISSN: 0167-4048, 1872-6208Veröffentlicht: Amsterdam Elsevier Ltd 01.08.2021Veröffentlicht in Computers & security (01.08.2021)“… However, the flexibility of JavaScript made these applications more prone to attacks that induce malicious behaviors in the code …”
Volltext
Journal Article -
16
Research on Malicious JavaScript Detection Technology Based on LSTM
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2018Veröffentlicht in IEEE access (2018)“… It can distinguish malicious JavaScript code and combat obfuscated code effectively. Experiments showed that the accuracy of detection model based on LSTM is 99.51 …”
Volltext
Journal Article -
17
Deep Neural Networks for Malicious JavaScript Detection Using Bytecode Sequences
ISSN: 2161-4407Veröffentlicht: IEEE 01.07.2020Veröffentlicht in Proceedings of ... International Joint Conference on Neural Networks (01.07.2020)“… To protect users from such cyberattacks, we propose a deep neural network for detecting malicious JavaScript codes by examining their bytecode sequences …”
Volltext
Tagungsbericht -
18
TransAST: A Machine Translation-Based Approach for Obfuscated Malicious JavaScript Detection
ISSN: 2158-3927Veröffentlicht: IEEE 01.01.2023Veröffentlicht in Proceedings - International Conference on Dependable Systems and Networks (01.01.2023)“… As an essential part of the website, JavaScript greatly enriches its functions. At the same time, JavaScript has become the most common attack payload on malicious website …”
Volltext
Tagungsbericht -
19
PyRHOH: A meta-learning analysis framework for determining the impact of compilation on malicious JavaScript identification
ISSN: 2666-8270, 2666-8270Veröffentlicht: Elsevier Ltd 01.09.2025Veröffentlicht in Machine learning with applications (01.09.2025)“… Automated identification of malicious JavaScript is a core problem within modern malware analysis …”
Volltext
Journal Article -
20
Statically Detecting JavaScript Obfuscation and Minification Techniques in the Wild
ISSN: 2158-3927Veröffentlicht: IEEE 01.06.2021Veröffentlicht in Proceedings - International Conference on Dependable Systems and Networks (01.06.2021)“… While malware developers transform their JavaScript code to hide its malicious intent and impede detection, well-intentioned developers also transform their code to, e.g …”
Volltext
Tagungsbericht

