Suchergebnisse - Malicious JavaScript code detection

Andere Suchmöglichkeiten:

  1. 1

    JACLNet:Application of adaptive code length network in JavaScript malicious code detection von Zhang, Zhining, Wan, Liang, Chu, Kun, Li, Shusheng, Wei, Haodong, Tang, Lu

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 14.12.2022
    Veröffentlicht in PloS one (14.12.2022)
    “… Currently, JavaScript malicious code detection methods are becoming more and more …”
    Volltext
    Journal Article
  2. 2

    Detecting malicious JavaScript code based on semantic analysis von Fang, Yong, Huang, Cheng, Su, Yu, Qiu, Yaoyao

    ISSN: 0167-4048, 1872-6208
    Veröffentlicht: Amsterdam Elsevier Ltd 01.06.2020
    Veröffentlicht in Computers & security (01.06.2020)
    “… However, attackers use the dynamics feature of JavaScript language to embed malicious code into web pages for the purpose of drive-by-download, redirection, etc …”
    Volltext
    Journal Article
  3. 3

    Detection of Obfuscated Malicious JavaScript Code von Alazab, Ammar, Khraisat, Ansam, Alazab, Moutaz, Singh, Sarabjot

    ISSN: 1999-5903, 1999-5903
    Veröffentlicht: Basel MDPI AG 01.08.2022
    Veröffentlicht in Future internet (01.08.2022)
    “… Websites on the Internet are becoming increasingly vulnerable to malicious JavaScript code because of its strong impact and dramatic effect …”
    Volltext
    Journal Article
  4. 4

    Malicious JavaScript Code Detection Based on Hybrid Analysis von He, Xincheng, Xu, Lei, Cha, Chunliu

    ISSN: 2640-0715
    Veröffentlicht: IEEE 01.12.2018
    “… However, since the heavy use of obfuscation techniques, many methods no longer apply to malicious JavaScript code detection, and it has been a huge challenge to de-obfuscate obfuscated malicious Java …”
    Volltext
    Tagungsbericht
  5. 5

    JStrong: Malicious JavaScript detection based on code semantic representation and graph neural network von Fang, Yong, Huang, Chaoyi, Zeng, Minchuan, Zhao, Zhiying, Huang, Cheng

    ISSN: 0167-4048, 1872-6208
    Veröffentlicht: Amsterdam Elsevier Ltd 01.07.2022
    Veröffentlicht in Computers & security (01.07.2022)
    “… However, the attacker uses the dynamic characteristics of the JavaScript language to embed malicious code into web pages to achieve the purpose of smuggling, redirection, and so on …”
    Volltext
    Journal Article
  6. 6

    MOJI: Character-level convolutional neural networks for Malicious Obfuscated JavaScript Inspection von Ishida, Minato, Kaneko, Naoshi, Sumi, Kazuhiko

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.04.2023
    Veröffentlicht in Applied soft computing (01.04.2023)
    “… Many malicious JavaScript detection methods perform code abstraction and prior feature extraction to uncover the functionality hidden by obfuscation …”
    Volltext
    Journal Article
  7. 7

    Detection Approach of Malicious JavaScript Code Based on deep learning von Zheng, Liyuan, Zhang, Dongcheng, Xie, Xin, Wang, Chen, Hou, Boyuan

    Veröffentlicht: IEEE 26.05.2023
    “… Traditional machine learning methods for detecting JavaScript malicious code have the problems of complex feature extraction process, extensive computation, and difficult detection due to malicious …”
    Volltext
    Tagungsbericht
  8. 8

    Detecting Malicious JavaScript Using Structure-Based Analysis of Graph Representation von Rozi, Muhammad Fakhrur, Ban, Tao, Ozawa, Seiichi, Yamada, Akira, Takahashi, Takeshi, Kim, Sangwook, Inoue, Daisuke

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2023
    Veröffentlicht in IEEE Access (2023)
    “… Malicious JavaScript code in web applications poses a significant threat as cyber attackers exploit it to perform various malicious activities …”
    Volltext
    Journal Article
  9. 9

    Behavior Analysis Usage with Behavior Tures Adoption for Malicious Code Detection on JAVASCRIPT Scenarios Example von Y. M. Tumanov, S.V. Gavrilyuk

    ISSN: 2074-7128, 2074-7136
    Veröffentlicht: Joint Stock Company "Experimental Scientific and Production Association SPELS 01.03.2010
    Veröffentlicht in Bezopasnostʹ informat͡s︡ionnykh tekhnologiĭ (01.03.2010)
    “… The article offers the method of malicious JavaScript code detection, based on behavior analysis …”
    Volltext
    Journal Article
  10. 10

    AMA: Static Code Analysis of Web Page for the Detection of Malicious Scripts von Seshagiri, Prabhu, Vazhayil, Anu, Sriram, Padmamala

    ISSN: 1877-0509, 1877-0509
    Veröffentlicht: Elsevier B.V 2016
    Veröffentlicht in Procedia computer science (2016)
    “… like Vigenere, Caesar and Atbash. The malicious iframes are injected to the websites using JavaScript and are also made hidden from the users perspective in-order to prevent detection …”
    Volltext
    Journal Article
  11. 11

    Detecting malicious JavaScript code in Mozilla von Hallaraker, O., Vigna, G.

    ISBN: 076952284X, 9780769522845
    Veröffentlicht: IEEE 2005
    “… ). We propose an approach to solve this problem that is based on monitoring JavaScript code execution and comparing the execution to high-level policies, to detect malicious code behavior …”
    Volltext
    Tagungsbericht
  12. 12

    ZipAST: Enhancing malicious JavaScript detection with sequence compression von Chen, Zixian, Wang, Weiping, Qin, Yan, Zhang, Shigeng

    ISSN: 0167-4048
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Computers & security (01.06.2025)
    “… Presently, mainstream detection methods usually extract the Abstract Syntax Tree (AST) from JavaScript code, which captures …”
    Volltext
    Journal Article
  13. 13

    An Approach for Malicious JavaScript Detection Using Adaptive Taylor Harris Hawks Optimization-Based Deep Convolutional Neural Network von Alex, Scaria, T, Dhiliphan Rajkumar

    ISSN: 1947-3532, 1947-3540
    Veröffentlicht: IGI Global 20.05.2022
    “… This paper devises a novel technique for detecting malicious JavaScript. Here, JavaScript codes are fed to the feature extraction phase for extracting the noteworthy …”
    Volltext
    Journal Article
  14. 14

    Deobfuscation, unpacking, and decoding of obfuscated malicious JavaScript for machine learning models detection performance improvement von Ndichu, Samuel, Kim, Sangwook, Ozawa, Seiichi

    ISSN: 2468-2322, 2468-6557, 2468-2322
    Veröffentlicht: Beijing The Institution of Engineering and Technology 01.09.2020
    Veröffentlicht in CAAI Transactions on Intelligence Technology (01.09.2020)
    “… Obfuscation is rampant in both benign and malicious JavaScript (JS) codes. It generates an obscure and undetectable code that hinders comprehension and analysis …”
    Volltext
    Journal Article
  15. 15

    Spider bird swarm algorithm with deep belief network for malicious JavaScript detection von Alex, Scaria, Dhiliphan Rajkumar, T

    ISSN: 0167-4048, 1872-6208
    Veröffentlicht: Amsterdam Elsevier Ltd 01.08.2021
    Veröffentlicht in Computers & security (01.08.2021)
    “… However, the flexibility of JavaScript made these applications more prone to attacks that induce malicious behaviors in the code …”
    Volltext
    Journal Article
  16. 16

    Research on Malicious JavaScript Detection Technology Based on LSTM von Fang, Yong, Huang, Cheng, Liu, Liang, Xue, Min

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2018
    Veröffentlicht in IEEE access (2018)
    “… It can distinguish malicious JavaScript code and combat obfuscated code effectively. Experiments showed that the accuracy of detection model based on LSTM is 99.51 …”
    Volltext
    Journal Article
  17. 17

    Deep Neural Networks for Malicious JavaScript Detection Using Bytecode Sequences von Rozi, Muhammad Fakhrur, Kim, Sangwook, Ozawa, Seiichi

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2020
    “… To protect users from such cyberattacks, we propose a deep neural network for detecting malicious JavaScript codes by examining their bytecode sequences …”
    Volltext
    Tagungsbericht
  18. 18

    TransAST: A Machine Translation-Based Approach for Obfuscated Malicious JavaScript Detection von Qin, Yan, Wang, Weiping, Chen, Zixian, Song, Hong, Zhang, Shigeng

    ISSN: 2158-3927
    Veröffentlicht: IEEE 01.01.2023
    “… As an essential part of the website, JavaScript greatly enriches its functions. At the same time, JavaScript has become the most common attack payload on malicious website …”
    Volltext
    Tagungsbericht
  19. 19

    PyRHOH: A meta-learning analysis framework for determining the impact of compilation on malicious JavaScript identification von Fulkerson, Eli, Yocam, Eric, Vaidyan, Varghese, Kamepalli, Mahesh, Wang, Yong, Comert, Gurcan

    ISSN: 2666-8270, 2666-8270
    Veröffentlicht: Elsevier Ltd 01.09.2025
    Veröffentlicht in Machine learning with applications (01.09.2025)
    “… Automated identification of malicious JavaScript is a core problem within modern malware analysis …”
    Volltext
    Journal Article
  20. 20

    Statically Detecting JavaScript Obfuscation and Minification Techniques in the Wild von Moog, Marvin, Demmel, Markus, Backes, Michael, Fass, Aurore

    ISSN: 2158-3927
    Veröffentlicht: IEEE 01.06.2021
    “… While malware developers transform their JavaScript code to hide its malicious intent and impede detection, well-intentioned developers also transform their code to, e.g …”
    Volltext
    Tagungsbericht