Suchergebnisse - Machine Learning XGBoost Algorithm

  1. 1

    Prediction of self-consolidating concrete properties using XGBoost machine learning algorithm: Part 1–Workability von Safhi, Amine el Mahdi, Dabiri, Hamed, Soliman, Ahmed, Khayat, Kamal H.

    ISSN: 0950-0618
    Veröffentlicht: Elsevier Ltd 08.12.2023
    Veröffentlicht in Construction & building materials (08.12.2023)
    “… of 4.0–20 s (X¯ = 11 s).•XGBoost Predicts Workability: High accuracy in predicting slump flow and V-funnel time …”
    Volltext
    Journal Article
  2. 2

    Cross-Border spillover of imported sovereign risk to China: Key factors identification based on XGBoost-SHAP explainable machine learning algorithm von Shi, Guifen, Chen, Zhizhen, Luo, Weichen, Wei, Zijun

    ISSN: 1544-6123
    Veröffentlicht: Elsevier Inc 01.12.2024
    Veröffentlicht in Finance research letters (01.12.2024)
    “… •Novel use of XGBoost-SHAP explainable machine learning algorithm to explore risk spillover channels …”
    Volltext
    Journal Article
  3. 3

    Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm von Feng, Jingpeng, Zhan, Lihua, Ma, Bolin, Zhou, Hao, Xiong, Bang, Guo, Jinzhan, Xia, Yunni, Hui, Shengmeng

    ISSN: 2073-4360, 2073-4360
    Veröffentlicht: Basel MDPI AG 14.10.2023
    Veröffentlicht in Polymers (14.10.2023)
    “… –metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm …”
    Volltext
    Journal Article
  4. 4

    MLMD—A Malware-Detecting Antivirus Tool Based on the XGBoost Machine Learning Algorithm von Palša, Jakub, Ádám, Norbert, Hurtuk, Ján, Chovancová, Eva, Madoš, Branislav, Chovanec, Martin, Kocan, Stanislav

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.07.2022
    Veröffentlicht in Applied sciences (01.07.2022)
    “… This paper focuses on training machine learning models using the XGBoost and extremely randomized trees algorithms on two datasets obtained using static and dynamic analysis of real malicious and benign samples …”
    Volltext
    Journal Article
  5. 5

    Enhancing the prediction of student performance based on the machine learning XGBoost algorithm von Asselman, Amal, Khaldi, Mohamed, Aammou, Souhaib

    ISSN: 1049-4820, 1744-5191
    Veröffentlicht: Abingdon Routledge 18.08.2023
    Veröffentlicht in Interactive learning environments (18.08.2023)
    “… In contrast, Machine Learning provides many powerful methods that could be efficient to enhance, in the technical sense, the prediction …”
    Volltext
    Journal Article
  6. 6

    Analyzing the Impact of Climate Factors on GNSS-Derived Displacements by Combining the Extended Helmert Transformation and XGboost Machine Learning Algorithm von Liu, Hanlin, Yang, Linqiang, Li, Linchao

    ISSN: 1687-725X, 1687-7268
    Veröffentlicht: New York Hindawi 2021
    Veröffentlicht in Journal of sensors (2021)
    “… To precisely analyze the effect of different climate factors on long-term GNSS monitoring records, this study combines the extended seven-parameter Helmert transformation and a machine learning …”
    Volltext
    Journal Article
  7. 7

    Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm von Yan, Hongyan, He, Zheng, Gao, Ce, Xie, Mingjing, Sheng, Haoyu, Chen, Huihua

    ISSN: 1474-0346, 1873-5320
    Veröffentlicht: Elsevier Ltd 01.10.2022
    Veröffentlicht in Advanced engineering informatics (01.10.2022)
    “… buildings based on XGBoost machine learning algorithm. In the proposed model, the construction project cost-significance theory (CS …”
    Volltext
    Journal Article
  8. 8

    XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage von Wang, Ruoran, Zhang, Jing, Shan, Baoyin, He, Min, Xu, Jianguo

    ISSN: 1178-2021, 1176-6328, 1178-2021
    Veröffentlicht: New Zealand Dove Medical Press Limited 01.01.2022
    Veröffentlicht in Neuropsychiatric disease and treatment (01.01.2022)
    “… This study is conducted to develop prognostic model using XGBoost (extreme gradient boosting …”
    Volltext
    Journal Article
  9. 9

    Prediction of self-consolidating concrete properties using XGBoost machine learning algorithm: Rheological properties von Safhi, Amine el Mahdi, Dabiri, Hamed, Soliman, Ahmed, Khayat, Kamal H.

    ISSN: 0032-5910, 1873-328X
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in Powder technology (01.04.2024)
    “… Utilizing these, an XGBoost model demonstrated exceptional accuracy (R2 of 0.99), markedly better than traditional methods …”
    Volltext
    Journal Article
  10. 10

    Analysis of sediment re-formation factors after ginseng beverage clarification based on XGBoost machine learning algorithm von Feng, Jiabao, Cui, Yuan, Jiang, Chunyan, Bai, Xueyuan, Zhao, Daqing, Liu, Meichen, Dong, Zhengqi, Yu, Shiting, Wang, Siming

    ISSN: 0308-8146, 1873-7072, 1873-7072
    Veröffentlicht: England Elsevier Ltd 15.01.2025
    Veröffentlicht in Food chemistry (15.01.2025)
    “… ) methods, based on the Extreme Gradient Boosting (XGBoost) model. The results showed that the clarity of the ginseng beverages was significantly improved by all the clarification treatments, but still formed sediment after storage …”
    Volltext
    Journal Article
  11. 11

    Backbone ground motion model through simulated records and XGBoost machine learning algorithm: An application for the Azores plateau (Portugal) von Karimzadeh, Shaghayegh, Mohammadi, Amirhossein, Salahuddin, Usman, Carvalho, Alexandra, Lourenço, Paulo B.

    ISSN: 0098-8847, 1096-9845
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.02.2024
    Veröffentlicht in Earthquake engineering & structural dynamics (01.02.2024)
    “… Azores Islands are seismically active due to the tectonic structure of the region. Since the 15th century, they have been periodically shaken by approximately …”
    Volltext
    Journal Article
  12. 12

    Forecasting short-term chlorophyll a concentration in Lake Erie using the machine learning XGBoost algorithm von Song, Yang

    ISSN: 1748-9326, 1748-9326
    Veröffentlicht: Bristol IOP Publishing 01.06.2025
    Veröffentlicht in Environmental research letters (01.06.2025)
    “… Leveraging machine learning tools to forecast algal blooms is crucial and promising for bloom management in various water systems …”
    Volltext
    Journal Article
  13. 13

    XGBoost machine learning algorithm for predicting unplanned readmission in elderly patients with coronary heart disease von Song, Xuewu, Shi, Jianyou, Zhu, Changyu, Xian, Feng, Dong, Ziyi, Li, Jinqi

    ISSN: 0197-4572, 1528-3984, 1528-3984
    Veröffentlicht: United States 01.11.2025
    Veröffentlicht in Geriatric nursing (New York) (01.11.2025)
    “… ). The extreme gradient boosting (XGBoost)-based model demonstrates good predictive performance and explainability …”
    Volltext
    Journal Article
  14. 14

    Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost, NGBoost, and LightGBM) with eXplainable Artificial Intelligence (XAI) approach von IBAN, Muzaffer Can, BILGILIOGLU, Suleyman Sefa

    ISSN: 1436-3240, 1436-3259
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
    “… Various machine learning classifiers such as Random Forest, Gradient Boosting Machines, and AdaBoost, as well as newer classifiers like XGBoost, LightGBM, and NGBoost, were used with 17 conditioning …”
    Volltext
    Journal Article
  15. 15

    EP142 Diagnosis of pain deception using MMPI-2 based on XGBoost machine learning algorithm: a single-blinded randomized controlled trial von Moon, Ho Sik, Kim, Sung-Jun

    ISSN: 1098-7339, 1532-8651
    Veröffentlicht: Secaucus BMJ Publishing Group Ltd 01.09.2023
    Veröffentlicht in Regional anesthesia and pain medicine (01.09.2023)
    “… This study explores using Minnesota Multiphasic Personality Inventory-2 (MMPI-2) analysis with machine learning (ML …”
    Volltext
    Journal Article
  16. 16

    XGBoost machine learning algorithm for differential diagnosis of pediatric syncope von Kovalchuk, Tetiana, Boyarchuk, Oksana, Bogai, Sviatoslav

    ISSN: 2313-6693, 2313-2396
    Veröffentlicht: 28.11.2023
    “… A machine learning model was built using XGBoost algorithm for multiclass classification based on input clinical, laboratory and instrumental patient data. Results …”
    Volltext
    Journal Article
  17. 17

    Land use and land cover changes in Notwane watershed, Botswana, using extreme gradient boost (XGBoost) machine learning algorithm von Magidi, James, Bangira, Tsitsi, Kelepile, Matlhogonolo, Shoko, Moreblessings

    ISSN: 1937-6812, 2163-2642
    Veröffentlicht: Routledge 29.07.2025
    Veröffentlicht in African geographical review (29.07.2025)
    “… This study utilized Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM), and Random Forest (RF …”
    Volltext
    Journal Article
  18. 18

    No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure von Carmona, Pedro, Dwekat, Aladdin, Mardawi, Zeena

    ISSN: 0275-5319, 1878-3384
    Veröffentlicht: Elsevier B.V 01.10.2022
    Veröffentlicht in Research in international business and finance (01.10.2022)
    “… This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly interpretable, by using a novel ML technique …”
    Volltext
    Journal Article
  19. 19

    Immune cell profiles and predictive modeling in osteoporotic vertebral fractures using XGBoost machine learning algorithms von Chen, Yi-Chou, Su, Hui-Chen, Huang, Shih-Ming, Yu, Ching-Hsiao, Chang, Jen-Huei, Chiu, Yi-Lin

    ISSN: 1756-0381, 1756-0381
    Veröffentlicht: London BioMed Central 04.02.2025
    Veröffentlicht in BioData mining (04.02.2025)
    “… Methods This study aims to investigate the xCell signature-based immune cell profiles in osteoporotic patients with and without vertebral fractures, utilizing advanced predictive modeling through the XGBoost algorithm …”
    Volltext
    Journal Article
  20. 20

    Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm von Fan, Xuehui, Ye, Ruixue, Gao, Yan, Xue, Kaiwen, Zhang, Zeyu, Xu, Jing, Zhao, Jingpu, Feng, Jun, Wang, Yulong

    ISSN: 2624-8212, 2624-8212
    Veröffentlicht: Switzerland Frontiers Media S.A 15.01.2025
    Veröffentlicht in Frontiers in artificial intelligence (15.01.2025)
    “… The Department of Rehabilitation Medicine is key to improving patients' quality of life. Driven by chronic diseases and an aging population, there is a need to …”
    Volltext
    Journal Article