Suchergebnisse - ML: Learning on the Edge & Model Compression

  1. 1

    A comprehensive review of model compression techniques in machine learning von Dantas, Pierre Vilar, Sabino da Silva, Waldir, Cordeiro, Lucas Carvalho, Carvalho, Celso Barbosa

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.11.2024
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.11.2024)
    “… This paper critically examines model compression techniques within the machine learning (ML …”
    Volltext
    Journal Article
  2. 2

    A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques von Li, Wenbin, Hacid, Hakim, Almazrouei, Ebtesam, Debbah, Merouane

    ISSN: 2673-2688, 2673-2688
    Veröffentlicht: Basel MDPI AG 01.09.2023
    Veröffentlicht in AI (Basel) (01.09.2023)
    “… and adapted in technologies such as data processing, model compression, distributed inference, and advanced learning paradigms for Edge ML requirements …”
    Volltext
    Journal Article
  3. 3

    FedComp: A Federated Learning Compression Framework for Resource-Constrained Edge Computing Devices von Wu, Donglei, Yang, Weihao, Jin, Haoyu, Zou, Xiangyu, Xia, Wen, Fang, Binxing

    ISSN: 0278-0070, 1937-4151
    Veröffentlicht: New York IEEE 01.01.2024
    “… Top-K sparsification-based compression techniques are popular and powerful for reducing communication costs in federated learning (FL …”
    Volltext
    Journal Article
  4. 4

    Machine Learning for Microcontroller-Class Hardware - A Review von Saha, Swapnil Sayan, Sandha, Sandeep Singh, Srivastava, Mani

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: United States IEEE 15.11.2022
    Veröffentlicht in IEEE sensors journal (15.11.2022)
    “… We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance …”
    Volltext
    Journal Article
  5. 5

    Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review von Shuvo, Md. Maruf Hossain, Islam, Syed Kamrul, Cheng, Jianlin, Morshed, Bashir I.

    ISSN: 0018-9219, 1558-2256
    Veröffentlicht: New York IEEE 01.01.2023
    Veröffentlicht in Proceedings of the IEEE (01.01.2023)
    “… However, deploying these highly accurate models for data-driven, learned, automatic, and practical machine learning (ML …”
    Volltext
    Journal Article
  6. 6

    Power Efficient Machine Learning Models Deployment on Edge IoT Devices von Fanariotis, Anastasios, Orphanoudakis, Theofanis, Kotrotsios, Konstantinos, Fotopoulos, Vassilis, Keramidas, George, Karkazis, Panagiotis

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 01.02.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (01.02.2023)
    “… This change has been achieved by incorporating small embedded devices into a larger computational system, connected through networking and referred to as edge devices …”
    Volltext
    Journal Article
  7. 7

    Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT von Mills, Jed, Hu, Jia, Min, Geyong

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.07.2020
    Veröffentlicht in IEEE internet of things journal (01.07.2020)
    “… The rapidly expanding number of Internet of Things (IoT) devices is generating huge quantities of data, but public concern over data privacy means users are apprehensive to send data to a central server for machine learning (ML) purposes …”
    Volltext
    Journal Article
  8. 8

    When Climate Meets Machine Learning: Edge to Cloud ML Energy Efficiency von Marculescu, Diana

    Veröffentlicht: IEEE 26.07.2021
    “… A large portion of current cloud and edge workloads feature Machine Learning (ML) tasks, thereby requiring a deep understanding of their energy efficiency …”
    Volltext
    Tagungsbericht
  9. 9

    Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices von Hidayat, Muhammad Ayat, Nakamura, Yugo, Arakawa, Yutaka

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.04.2024
    Veröffentlicht in IEEE internet of things journal (15.04.2024)
    “… Federated learning (FL) has gained widespread attention as a distributed machine learning (ML …”
    Volltext
    Journal Article
  10. 10

    Towards edge computing in intelligent manufacturing: Past, present and future von Nain, Garima, Pattanaik, K.K., Sharma, G.K.

    ISSN: 0278-6125
    Veröffentlicht: Elsevier Ltd 01.01.2022
    Veröffentlicht in Journal of manufacturing systems (01.01.2022)
    “… It drives the convergence of several cutting-edge technologies to provoke autonomous, fully integrated, collaborated, highly automated, and customized industries. Edge Computing (EC …”
    Volltext
    Journal Article
  11. 11

    Combinative model compression approach for enhancing 1D CNN efficiency for EIT-based Hand Gesture Recognition on IoT edge devices von Mnif, Mahdi, Sahnoun, Salwa, Ben Saad, Yasmine, Fakhfakh, Ahmed, Kanoun, Olfa

    ISSN: 2542-6605, 2542-6605
    Veröffentlicht: Elsevier B.V 01.12.2024
    Veröffentlicht in Internet of things (Amsterdam. Online) (01.12.2024)
    “… Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices …”
    Volltext
    Journal Article
  12. 12

    Efficient Resource-Constrained Federated Learning Clustering with Local Data Compression on the Edge-to-Cloud Continuum von Prigent, Cedric, Chelli, Melvin, Costan, Alexandru, Cudennec, Loic, Schubotz, Rene, Antoniu, Gabriel

    ISSN: 2640-0316
    Veröffentlicht: IEEE 18.12.2024
    “… While it can be a highly efficient tool for large-scale collaborative training of Machine Learning (ML …”
    Volltext
    Tagungsbericht
  13. 13

    Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics von Amaizu, Maryleen Uluaku, Ali, Muhammad, Anjum, Ashiq, Liu, Lu, Liotta, Antonio, Rana, Omer

    ISSN: 2377-3782, 2377-3790
    Veröffentlicht: Piscataway IEEE 01.07.2023
    Veröffentlicht in IEEE transactions on sustainable computing (01.07.2023)
    “… However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics …”
    Volltext
    Journal Article
  14. 14

    Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training von Malandrino, Francesco, di Giacomo, Giuseppe, Karamzade, Armin, Levorato, Marco, Chiasserini, Carla Fabiana

    ISSN: 1063-6692, 1558-2566
    Veröffentlicht: New York IEEE 01.04.2024
    Veröffentlicht in IEEE/ACM transactions on networking (01.04.2024)
    “… Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks, thereby exploiting their resources and data …”
    Volltext
    Journal Article
  15. 15

    TinyML model compression: A comparative study of pruning and quantization on selected standard and custom neural networks von Shabir, Muhammad Yasir, Torta, Gianluca, Damiani, Ferruccio

    ISSN: 1018-4864, 1572-9451
    Veröffentlicht: New York Springer Nature B.V 01.12.2025
    Veröffentlicht in Telecommunication systems (01.12.2025)
    “… In Machine Learning (ML), the deployment of complex Neural Network (NN) models on memory-constrained Internet of Things (IoT …”
    Volltext
    Journal Article
  16. 16

    PPEFL: An Edge Federated Learning Architecture with Privacy-Preserving Mechanism von Liu, Zhenpeng, Gao, Zilin, Wang, Jingyi, Liu, Qiannan, Wei, Jianhang

    ISSN: 1530-8669, 1530-8677
    Veröffentlicht: Oxford Hindawi 2022
    “… The emergence of federal learning makes up for some shortcomings of machine learning, and its distributed machine learning paradigm can effectively solve the problem of data islands, allowing users …”
    Volltext
    Journal Article
  17. 17

    Joint Video Frame Scheduling and Resource Allocation for Device-Edge Collaborative Video Intelligent Analytics von Li, Jiayi, Chi, Xiaoyu, Wang, Hui, Su, Yi, Han, Shujun, Xu, Xiaodong

    ISSN: 1558-2612
    Veröffentlicht: IEEE 24.03.2025
    “… Specifically, we propose a joint optimization scheme for video frame scheduling, adaptive video frame compression and Machine Learning (ML …”
    Volltext
    Tagungsbericht
  18. 18

    HiRISE: High-Resolution Image Scaling for Edge ML via In-Sensor Compression and Selective ROI von Reidy, Brendan, Tabrizchi, Sepehr, Mohammadi, Mohamadreza, Angizi, Shaahin, Roohi, Arman, Zand, Ramtin

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.07.2024
    Veröffentlicht in arXiv.org (23.07.2024)
    “… With the rise of tiny IoT devices powered by machine learning (ML), many researchers have directed their focus toward compressing models to fit on tiny edge devices …”
    Volltext
    Paper
  19. 19

    Performance Benchmarking of ML Models for Resource Constrained Devices von S, Sreeraj, D, Harikrishnan

    Veröffentlicht: IEEE 09.01.2025
    “… This study underscores the importance of model compression and optimization techniques to enable the deployment of sophisticated models in resource constrained devices …”
    Volltext
    Tagungsbericht
  20. 20

    Compressing and Fine-tuning DNNs for Efficient Inference in Mobile Device-Edge Continuum von Singh, Gurtaj, Chukhno, Olga, Campolo, Claudia, Molinaro, Antonella, Chiasserini, Carla Fabiana

    Veröffentlicht: IEEE 08.07.2024
    “… (hence, model complexity) and latency and energy consumption. In this work, we explore the different options for the deployment of a machine learning pipeline …”
    Volltext
    Tagungsbericht