Suchergebnisse - ML: Learning on the Edge & Model Compression
-
1
A comprehensive review of model compression techniques in machine learning
ISSN: 0924-669X, 1573-7497Veröffentlicht: New York Springer US 01.11.2024Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.11.2024)“… This paper critically examines model compression techniques within the machine learning (ML …”
Volltext
Journal Article -
2
A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques
ISSN: 2673-2688, 2673-2688Veröffentlicht: Basel MDPI AG 01.09.2023Veröffentlicht in AI (Basel) (01.09.2023)“… and adapted in technologies such as data processing, model compression, distributed inference, and advanced learning paradigms for Edge ML requirements …”
Volltext
Journal Article -
3
FedComp: A Federated Learning Compression Framework for Resource-Constrained Edge Computing Devices
ISSN: 0278-0070, 1937-4151Veröffentlicht: New York IEEE 01.01.2024Veröffentlicht in IEEE transactions on computer-aided design of integrated circuits and systems (01.01.2024)“… Top-K sparsification-based compression techniques are popular and powerful for reducing communication costs in federated learning (FL …”
Volltext
Journal Article -
4
Machine Learning for Microcontroller-Class Hardware - A Review
ISSN: 1530-437X, 1558-1748Veröffentlicht: United States IEEE 15.11.2022Veröffentlicht in IEEE sensors journal (15.11.2022)“… We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance …”
Volltext
Journal Article -
5
Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review
ISSN: 0018-9219, 1558-2256Veröffentlicht: New York IEEE 01.01.2023Veröffentlicht in Proceedings of the IEEE (01.01.2023)“… However, deploying these highly accurate models for data-driven, learned, automatic, and practical machine learning (ML …”
Volltext
Journal Article -
6
Power Efficient Machine Learning Models Deployment on Edge IoT Devices
ISSN: 1424-8220, 1424-8220Veröffentlicht: Switzerland MDPI AG 01.02.2023Veröffentlicht in Sensors (Basel, Switzerland) (01.02.2023)“… This change has been achieved by incorporating small embedded devices into a larger computational system, connected through networking and referred to as edge devices …”
Volltext
Journal Article -
7
Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT
ISSN: 2327-4662, 2327-4662Veröffentlicht: Piscataway IEEE 01.07.2020Veröffentlicht in IEEE internet of things journal (01.07.2020)“… The rapidly expanding number of Internet of Things (IoT) devices is generating huge quantities of data, but public concern over data privacy means users are apprehensive to send data to a central server for machine learning (ML) purposes …”
Volltext
Journal Article -
8
When Climate Meets Machine Learning: Edge to Cloud ML Energy Efficiency
Veröffentlicht: IEEE 26.07.2021Veröffentlicht in 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) (26.07.2021)“… A large portion of current cloud and edge workloads feature Machine Learning (ML) tasks, thereby requiring a deep understanding of their energy efficiency …”
Volltext
Tagungsbericht -
9
Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices
ISSN: 2327-4662, 2327-4662Veröffentlicht: Piscataway IEEE 15.04.2024Veröffentlicht in IEEE internet of things journal (15.04.2024)“… Federated learning (FL) has gained widespread attention as a distributed machine learning (ML …”
Volltext
Journal Article -
10
Towards edge computing in intelligent manufacturing: Past, present and future
ISSN: 0278-6125Veröffentlicht: Elsevier Ltd 01.01.2022Veröffentlicht in Journal of manufacturing systems (01.01.2022)“… It drives the convergence of several cutting-edge technologies to provoke autonomous, fully integrated, collaborated, highly automated, and customized industries. Edge Computing (EC …”
Volltext
Journal Article -
11
Combinative model compression approach for enhancing 1D CNN efficiency for EIT-based Hand Gesture Recognition on IoT edge devices
ISSN: 2542-6605, 2542-6605Veröffentlicht: Elsevier B.V 01.12.2024Veröffentlicht in Internet of things (Amsterdam. Online) (01.12.2024)“… Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices …”
Volltext
Journal Article -
12
Efficient Resource-Constrained Federated Learning Clustering with Local Data Compression on the Edge-to-Cloud Continuum
ISSN: 2640-0316Veröffentlicht: IEEE 18.12.2024Veröffentlicht in Proceedings - International Conference on High Performance Computing (18.12.2024)“… While it can be a highly efficient tool for large-scale collaborative training of Machine Learning (ML …”
Volltext
Tagungsbericht -
13
Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics
ISSN: 2377-3782, 2377-3790Veröffentlicht: Piscataway IEEE 01.07.2023Veröffentlicht in IEEE transactions on sustainable computing (01.07.2023)“… However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics …”
Volltext
Journal Article -
14
Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training
ISSN: 1063-6692, 1558-2566Veröffentlicht: New York IEEE 01.04.2024Veröffentlicht in IEEE/ACM transactions on networking (01.04.2024)“… Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks, thereby exploiting their resources and data …”
Volltext
Journal Article -
15
TinyML model compression: A comparative study of pruning and quantization on selected standard and custom neural networks
ISSN: 1018-4864, 1572-9451Veröffentlicht: New York Springer Nature B.V 01.12.2025Veröffentlicht in Telecommunication systems (01.12.2025)“… In Machine Learning (ML), the deployment of complex Neural Network (NN) models on memory-constrained Internet of Things (IoT …”
Volltext
Journal Article -
16
PPEFL: An Edge Federated Learning Architecture with Privacy-Preserving Mechanism
ISSN: 1530-8669, 1530-8677Veröffentlicht: Oxford Hindawi 2022Veröffentlicht in Wireless communications and mobile computing (2022)“… The emergence of federal learning makes up for some shortcomings of machine learning, and its distributed machine learning paradigm can effectively solve the problem of data islands, allowing users …”
Volltext
Journal Article -
17
Joint Video Frame Scheduling and Resource Allocation for Device-Edge Collaborative Video Intelligent Analytics
ISSN: 1558-2612Veröffentlicht: IEEE 24.03.2025Veröffentlicht in IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC (24.03.2025)“… Specifically, we propose a joint optimization scheme for video frame scheduling, adaptive video frame compression and Machine Learning (ML …”
Volltext
Tagungsbericht -
18
HiRISE: High-Resolution Image Scaling for Edge ML via In-Sensor Compression and Selective ROI
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.07.2024Veröffentlicht in arXiv.org (23.07.2024)“… With the rise of tiny IoT devices powered by machine learning (ML), many researchers have directed their focus toward compressing models to fit on tiny edge devices …”
Volltext
Paper -
19
Performance Benchmarking of ML Models for Resource Constrained Devices
Veröffentlicht: IEEE 09.01.2025Veröffentlicht in 2025 Fifth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (09.01.2025)“… This study underscores the importance of model compression and optimization techniques to enable the deployment of sophisticated models in resource constrained devices …”
Volltext
Tagungsbericht -
20
Compressing and Fine-tuning DNNs for Efficient Inference in Mobile Device-Edge Continuum
Veröffentlicht: IEEE 08.07.2024Veröffentlicht in 2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom) (08.07.2024)“… (hence, model complexity) and latency and energy consumption. In this work, we explore the different options for the deployment of a machine learning pipeline …”
Volltext
Tagungsbericht