Suchergebnisse - ML: Deep Generative Models & Autoencoders

  1. 1

    Harnessing Generative Modeling and Autoencoders Against Adversarial Threats in Autonomous Vehicles von Raja, Kathiroli, Theerthagiri, Sudhakar, Swaminathan, Sriram Venkataraman, Suresh, Sivassri, Raja, Gunasekaran

    ISSN: 0098-3063, 1558-4127
    Veröffentlicht: New York IEEE 01.08.2024
    Veröffentlicht in IEEE transactions on consumer electronics (01.08.2024)
    “… To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions …”
    Volltext
    Journal Article
  2. 2

    Lung image quality assessment and diagnosis using generative autoencoders in unsupervised ensemble learning von Rajasekar, Elakkiya, Chandra, Harshiv, Pears, Nick, Vairavasundaram, Subramaniyaswamy, Kotecha, Ketan

    ISSN: 1746-8094
    Veröffentlicht: Elsevier Ltd 01.04.2025
    Veröffentlicht in Biomedical signal processing and control (01.04.2025)
    “… Proposed Architecture of Lung Image Diagnosis Using Generative Autoencoders in Unsupervised Ensemble Learning. [Display omitted] •Proposed GAME …”
    Volltext
    Journal Article
  3. 3

    An investigation on machine learning predictive accuracy improvement and uncertainty reduction using VAE-based data augmentation von Alsafadi, Farah, Yaseen, Mahmoud, Wu, Xu

    ISSN: 0029-5493
    Veröffentlicht: United States Elsevier B.V 15.12.2025
    Veröffentlicht in Nuclear engineering and design (15.12.2025)
    “… disciplines. One potential way to resolve the data scarcity issue is deep generative learning, which uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples …”
    Volltext
    Journal Article
  4. 4

    At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence von Celik, Abdulkadir, Eltawil, Ahmed M.

    ISSN: 2644-125X, 2644-125X
    Veröffentlicht: New York IEEE 2024
    “… -futuristic visions to life along with added technical intricacies. Although analytical models lay the foundations and offer systematic insights, we have recently witnessed a noticeable surge in research suggesting machine learning (ML …”
    Volltext
    Journal Article
  5. 5

    Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation von Fuhr, Addis S., Sumpter, Bobby G.

    ISSN: 2296-8016, 2296-8016
    Veröffentlicht: United States Frontiers Research Foundation 22.03.2022
    Veröffentlicht in Frontiers in materials (22.03.2022)
    “… Recently, a relatively new branch of AI/ML, deep generative models (GMs), provide additional promise as they encode material structure and/or properties into a latent …”
    Volltext
    Journal Article
  6. 6

    The emerging role of generative artificial intelligence in transplant medicine von Deeb, Maya, Gangadhar, Anirudh, Rabindranath, Madhumitha, Rao, Khyathi, Brudno, Michael, Sidhu, Aman, Wang, Bo, Bhat, Mamatha

    ISSN: 1600-6135, 1600-6143, 1600-6143
    Veröffentlicht: United States Elsevier Inc 01.10.2024
    Veröffentlicht in American journal of transplantation (01.10.2024)
    “… Generative artificial intelligence (AI), a subset of machine learning that creates new content based on training data, has witnessed tremendous advances in recent years …”
    Volltext
    Journal Article
  7. 7

    Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization von Zhou, Xiaokang, Zheng, Xuzhe, Shu, Tian, Liang, Wei, Wang, Kevin I-Kai, Qi, Lianyong, Shimizu, Shohei, Jin, Qun

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.02.2025
    “… ) issue, in modern smart manufacturing or intelligent transportation systems (ITSs). In this study, we newly design and introduce a deep generative model framework, which seamlessly incorporates the information theoretic learning (ITL …”
    Volltext
    Journal Article
  8. 8

    Spatio-temporal deep learning models of 3D turbulence with physics informed diagnostics von Mohan, Arvind T., Tretiak, Dima, Chertkov, Misha, Livescu, Daniel

    ISSN: 1468-5248, 1468-5248
    Veröffentlicht: Taylor & Francis 02.10.2020
    Veröffentlicht in Journal of turbulence (02.10.2020)
    “… of freedom required to resolve all the dynamically significant spatio-temporal scales. Designing efficient and accurate Machine Learning (ML …”
    Volltext
    Journal Article
  9. 9

    Context-Aware Learning for Generative Models von Perdikis, Serafeim, Leeb, Robert, Chavarriaga, Ricardo, Millan, Jose del R.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.08.2021
    “… This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables …”
    Volltext
    Journal Article
  10. 10

    Classification of cervical cancer using Dense CapsNet with Seg-UNet and denoising autoencoders von Yang, Hui, Aydi, Walid, Innab, Nisreen, Ghoneim, Mohamed E., Ferrara, Massimiliano

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 30.12.2024
    Veröffentlicht in Scientific reports (30.12.2024)
    “… Cervical cancer classification using machine learning (ML) and deep learning (DL) has been extensively studied to enhance the conventional diagnostic process …”
    Volltext
    Journal Article
  11. 11

    An evolutionary variational autoencoder for perovskite discovery von Chenebuah, Ericsson Tetteh, Nganbe, Michel, Tchagang, Alain Beaudelaire

    ISSN: 2296-8016, 2296-8016
    Veröffentlicht: Frontiers Media S.A 22.09.2023
    Veröffentlicht in Frontiers in materials (22.09.2023)
    “… Previous efforts for simulating the discovery of novel perovskites via ML have often been limited to straightforward tabular-dataset models and compositional phase-field representations …”
    Volltext
    Journal Article
  12. 12
  13. 13

    Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder von Oliveira, André F, Da Silva, Juarez L F, Quiles, Marcos G

    ISSN: 1549-960X, 1549-960X
    Veröffentlicht: United States 28.02.2022
    Veröffentlicht in Journal of chemical information and modeling (28.02.2022)
    “… Here we unite these applications under a single molecular representation and ML algorithm by modifying the grammar variational autoencoder (GVAE …”
    Weitere Angaben
    Journal Article
  14. 14

    Deep Learning-Enhanced Gap Filling in Drosophila Melanogaster Genomic Data von Sharma, Jivitesh, Jetschny, Stefan, Kapun, Martin, Belaid, Mohamed B

    ISSN: 1946-0759
    Veröffentlicht: IEEE 18.12.2024
    “… This study introduces deep learning (DL) methods for imputing missing allele-frequency information in large-scale genome-wide pooled re-sequencing (Pool-Seq …”
    Volltext
    Tagungsbericht
  15. 15

    Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence von Dindorf, Carlo, Dully, Jonas, Konradi, Jürgen, Wolf, Claudia, Becker, Stephan, Simon, Steven, Huthwelker, Janine, Werthmann, Frederike, Kniepert, Johanna, Drees, Philipp, Betz, Ulrich, Fröhlich, Michael

    ISSN: 2296-4185, 2296-4185
    Veröffentlicht: Switzerland Frontiers Media SA 14.02.2024
    Veröffentlicht in Frontiers in bioengineering and biotechnology (14.02.2024)
    “… Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets …”
    Volltext
    Journal Article
  16. 16

    Mutated traffic detection and recovery: an adversarial generative deep learning approach von Salman, Ola, Elhajj, Imad H., Kayssi, Ayman, Chehab, Ali

    ISSN: 0003-4347, 1958-9395
    Veröffentlicht: Cham Springer International Publishing 01.06.2022
    Veröffentlicht in Annales des télécommunications (01.06.2022)
    “… In this paper, we propose a deep learning (DL) model to detect mutated traffic and recover the original one …”
    Volltext
    Journal Article
  17. 17

    A survey of machine learning techniques in structural and multidisciplinary optimization von Ramu, Palaniappan, Thananjayan, Pugazhenthi, Acar, Erdem, Bayrak, Gamze, Park, Jeong Woo, Lee, Ikjin

    ISSN: 1615-147X, 1615-1488
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
    Veröffentlicht in Structural and multidisciplinary optimization (01.09.2022)
    “… Machine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years …”
    Volltext
    Journal Article
  18. 18

    Application of machine learning techniques for warfarin dosage prediction: a case study on the MIMIC-III dataset von Wani, Aasim Ayaz, Abeer, Fatima

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 02.01.2025
    Veröffentlicht in PeerJ. Computer science (02.01.2025)
    “… ) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE …”
    Volltext
    Journal Article
  19. 19

    Imputation of Missing Values in Training Data using Variational Autoencoder von Hong, Xuerui, Hao, Shuang

    ISSN: 2473-3490
    Veröffentlicht: IEEE 01.04.2023
    “… The emergence of deep generative models also opens up new opportunities, especially for dealing with a particularly large number of missing values …”
    Volltext
    Tagungsbericht
  20. 20

    A feature mapping technique for complex data object generation with likelihood and deep generative approaches von Muramudalige, Shashika R., Jayasumana, Anura P., Wang, Haonan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2023
    Veröffentlicht in IEEE access (01.01.2023)
    “… When a sufficient amount of training data is available, Machine Learning (ML) models show great promise for solving problems involving complex and dynamic patterns …”
    Volltext
    Journal Article