Suchergebnisse - Layered sparse autoencoder

  • Treffer 1 - 18 von 18
Treffer weiter einschränken
  1. 1

    Hybrid Greylag Goose deep learning with layered sparse network for women nutrition recommendation during menstrual cycle von Logapriya, E., Rajendran, Surendran, Zakariah, Mohammad

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 18.02.2025
    Veröffentlicht in Scientific reports (18.02.2025)
    “… Next, feature extraction is accomplished using the Layered Sparse Autoencoder Network …”
    Volltext
    Journal Article
  2. 2

    Sparse semi-autoencoders to solve the vanishing information problem in multi-layered neural networks von Kamimura, Ryotaro, Takeuchi, Haruhiko

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.07.2019
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.07.2019)
    “… The present paper aims to propose a new neural network called “sparse semi-autoencoder …”
    Volltext
    Journal Article
  3. 3

    Supervised Learning via Unsupervised Sparse Autoencoder von Liu, Jianran, Li, Chan, Yang, Wenyuan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2018
    Veröffentlicht in IEEE access (2018)
    “… In this paper, an unsupervised multiple layered sparse autoencoder model is studied. Its advantage is that it reduces the reconstruction error as its optimization goal …”
    Volltext
    Journal Article
  4. 4

    Layered Media Parameter Inversion Method Based on Deconvolution Autoencoder and Self-Attention Mechanism Using GPR Data von Yang, Xiaopeng, Sun, Haoran, Guo, Conglong, Li, Yixuan, Gong, Junbo, Qu, Xiaodong, Lan, Tian

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
    “… the deconvolution autoencoder and the parameter inversion network. First, the deconvolution autoencoder is introduced to solve the pulse response of layered medium systems …”
    Volltext
    Journal Article
  5. 5

    Nonredundant sparse feature extraction using autoencoders with receptive fields clustering von Ayinde, Babajide O., Zurada, Jacek M.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.09.2017
    Veröffentlicht in Neural networks (01.09.2017)
    “… Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading …”
    Volltext
    Journal Article
  6. 6

    Anomaly detection for blueberry data using sparse autoencoder-support vector machine von Wei, Dianwen, Zheng, Jian, Qu, Hongchun

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 10.03.2023
    Veröffentlicht in PeerJ. Computer science (10.03.2023)
    “… To address this issue, this article proposes a hybrid method of combining a sparse autoencoder with a support vector machine …”
    Volltext
    Journal Article
  7. 7

    Stacked Autoencoder Based Weak Supervision for Social Image Understanding von Xu, Chaoyang, Dai, Yuanfei, Lin, Renjie, Wang, Shiping

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… are frequently utilized for this purpose. Autoencoder models have been validated to be effective in learning latent low-dimensional representations in unsupervised learning …”
    Volltext
    Journal Article
  8. 8

    A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis von Sohaib, Muhammad, Kim, Cheol-Hong, Kim, Jong-Myon

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 11.12.2017
    Veröffentlicht in Sensors (Basel, Switzerland) (11.12.2017)
    “… A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs …”
    Volltext
    Journal Article
  9. 9

    A Novel Group Recommendation Model With Two-Stage Deep Learning von Huang, Zhenhua, Liu, Yajun, Zhan, Choujun, Lin, Chen, Cai, Weiwei, Chen, Yunwen

    ISSN: 2168-2216, 2168-2232
    Veröffentlicht: New York IEEE 01.09.2022
    “… Yet, their recommendation performance is still unsatisfactory due to sparse group-item interactions …”
    Volltext
    Journal Article
  10. 10

    A hybrid anomaly detection method for high dimensional data von Zhang, Xin, Wei, Pingping, Wang, Qingling

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ, Inc 12.01.2023
    Veröffentlicht in PeerJ. Computer science (12.01.2023)
    “… instances from normal instances. To address this, this article proposes an anomaly detection method combining an autoencoder and a sparse weighted least squares-support vector machine …”
    Volltext
    Journal Article
  11. 11

    Clustering of receptive fields in Autoencoders von Ayinde, Babajide O., Zurada, Jacek M.

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2016
    “… The results from previous work show that a good number of encoding and decoding filters of layered autoencoders are duplicative thereby enforcing two or more processing filters to extract the same …”
    Volltext
    Tagungsbericht
  12. 12

    The Deep Neural Network Based Classification of Fingers Pattern Using Electromyography von Ahmad, Jawad, Butt, Ammar Mohsin, Hussain, Mohsin, Akbar, Muhammad Azeem, Rehman, Waheed Ur

    Veröffentlicht: IEEE 01.05.2018
    “… ). The hidden layer holds Sparse Autoencoders followed by a SoftMax layer that are stacked together to form multi-layered feed forward network …”
    Volltext
    Tagungsbericht
  13. 13

    Securing the Road Ahead: A Survey on Internet of Vehicles Security Powered by a Conceptual Blockchain‐Based Intrusion Detection System for Smart Cities von Al‐Quayed, Fatima, Tariq, Noshina, Humayun, Mamoona, Aslam Khan, Farrukh, Attique Khan, Muhammad, Alnusairi, Thanaa S.

    ISSN: 2161-3915, 2161-3915
    Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.04.2025
    “… ABSTRACT The Internet of Vehicles (IoV) is a critical component of the smart city. Various nodes exchange sensitive data for urban mobility, such as …”
    Volltext
    Journal Article
  14. 14

    Hands-on deep learning algorithms with Python: master deep learning algorithms with math by implementing them from scratch von Sudharsan Ravichandiran, Ravichandiran

    Veröffentlicht: Packt Publishing 25.07.2019
    “… such as CNNs, RNNs, and more using TensorFlowBook DescriptionDeep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities …”
    Volltext
    E-Book
  15. 15

    Hands-On Deep Learning Algorithms with Python: Master Deep Learning Algorithms with Extensive Math by Implementing Them Using TensorFlow von Ravichandiran, Sudharsan

    ISBN: 9781789344158, 1789344158
    Veröffentlicht: Birmingham Packt Publishing, Limited 2019
    “… This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains …”
    Volltext
    E-Book
  16. 16

    Deep metabolome: Applications of deep learning in metabolomics von Pomyen, Yotsawat, Wanichthanarak, Kwanjeera, Poungsombat, Patcha, Fahrmann, Johannes, Grapov, Dmitry, Khoomrung, Sakda

    ISSN: 2001-0370, 2001-0370
    Veröffentlicht: Netherlands Elsevier B.V 01.01.2020
    Veröffentlicht in Computational and structural biotechnology journal (01.01.2020)
    “… [Display omitted] •The applications of deep learning has recently emerged in metabolomics research.•Deep learning has been most widely applied in data …”
    Volltext
    Journal Article
  17. 17

    Unsupervised Relational Feature Learning for Vision von Konda, Kishore Reddy

    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2016
    “… This thesis contributes to the field of machine learning with a specific focus on the methods for learning relations between the inputs. Learning relationships …”
    Volltext
    Dissertation
  18. 18

    Only sparsity based loss function for learning representations von Bakaraju, Vivek, Kishore Reddy Konda

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.03.2019
    Veröffentlicht in arXiv.org (07.03.2019)
    “… We study the emergence of sparse representations in neural networks. We show that in unsupervised models with regularization, the emergence of sparsity …”
    Volltext
    Paper