Suchergebnisse - LSTM and SVM NLP Machine learning Transformer SVM offensive language

  • Treffer 1 - 4 von 4
Treffer weiter einschränken
  1. 1

    Arabic Offensive Language Classification: Leveraging Transformer, LSTM, and SVM von Rasheed, Areeg Fahad, Zarkoosh, M., Abbas, Safa F., Sabah Al-Azzawi, Sana

    ISBN: 9798350303926, 9798350303919
    Veröffentlicht: IEEE 14.12.2023
    “… Three distinct strategies were used: support vector machine (SVM), long short-term memory (LSTM …”
    Volltext
    Tagungsbericht
  2. 2

    RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models von Zain, Muhammad, Hussain, Nisar, Qasim, Amna, Mehak, Gull, Ahmad, Fiaz, Sidorov, Grigori, Gelbukh, Alexander

    ISSN: 1999-4893, 1999-4893
    Veröffentlicht: Basel MDPI AG 01.07.2025
    Veröffentlicht in Algorithms (01.07.2025)
    “… This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels …”
    Volltext
    Journal Article
  3. 3

    NLP-CUET@DravidianLangTech-EACL2021: Offensive Language Detection from Multilingual Code-Mixed Text using Transformers von Sharif, Omar, Hossain, Eftekhar, Hoque, Mohammed Moshiul

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 28.02.2021
    Veröffentlicht in arXiv.org (28.02.2021)
    “… To accomplish the tasks, we employed two machine learning techniques (LR, SVM), three deep learning (LSTM, LSTM+Attention …”
    Volltext
    Paper
  4. 4

    Detection of Inappropriate Language on Social Media Platforms Using Machine Learning Algorithms von Mishra, Shri Om, Ahmer, Mohd, Mittal, Nupur, Maurya, Akhilesh Kumar, Kumar Singh, Amit, Kumar, Ashawani

    ISBN: 9798350364682
    Veröffentlicht: IEEE 15.11.2024
    “… This paper explores the effectiveness of different machine learning techniques in detecting offensive language on social media, using real-world datasets …”
    Volltext
    Tagungsbericht