Suchergebnisse - Kernel tensor sparse coding

  • Treffer 1 - 19 von 19
Treffer weiter einschränken
  1. 1

    Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image von Yang, Lixia, Zhang, Rui, Bao, Yajun, Yang, Shuyuan, Jiao, Licheng

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 01.01.2023
    Veröffentlicht in IEEE geoscience and remote sensing letters (01.01.2023)
    “… In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV …”
    Volltext
    Journal Article
  2. 2

    Precise crop classification of UAV hyperspectral imagery using kernel tensor slice sparse coding based classifier von Yang, Lixia, Chen, Jinwei, Zhang, Rui, Yang, Shuyuan, Zhang, Xinyu, Jiao, Licheng

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 28.09.2023
    Veröffentlicht in Neurocomputing (Amsterdam) (28.09.2023)
    “… •The KTSSOMP algorithm adaptively learns the sparse coding coefficients of KTSSCC.•There are very few parameters in our proposed KTSSCC model …”
    Volltext
    Journal Article
  3. 3

    Two Layer Tensor Form Convolutional Sparse Coding for Stereo Matching von Cheng, Chunbo, Cui, Wenjing

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2021
    Veröffentlicht in IEEE access (2021)
    “… Therefore, it is very important to establish a deep tensor model. In this paper, we propose a two layer tensor form convolutional sparse coding model, which can automatically learn the deep convolutional kernel …”
    Volltext
    Journal Article
  4. 4

    Deep High-order Tensor Convolutional Sparse Coding for Stereo Matching von Cui, Wenjing, Cheng, Chunbo

    Veröffentlicht: IEEE 06.08.2021
    “… Therefore, it is very important to establish a deep high order tensor model. In this paper, we propose a deep high-order tensor convolutional sparse coding model, which can automatically learn the deep convolutional kernel …”
    Volltext
    Tagungsbericht
  5. 5

    Deep High-Order Tensor Convolutional Sparse Coding for Hyperspectral Image Classification von Cheng, Chunbo, Li, Hong, Peng, Jiangtao, Cui, Wenjing, Zhang, Liming

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2022
    “… In this article, a deep high-order tensor convolutional sparse coding (CSC) model is proposed, which can be used to train deep high-order filters …”
    Volltext
    Journal Article
  6. 6

    Large-Scale Subspace Clustering Based on Purity Kernel Tensor Learning von Zheng, Yilu, Zhao, Shuai, Zhang, Xiaoqian, Xu, Yinlong, Peng, Lifan

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.01.2024
    Veröffentlicht in Electronics (Basel) (01.01.2024)
    “… ) tasks challenging to execute effectively. To address these issues, we propose a large-scale subspace clustering method based on pure kernel tensor learning (PKTLS2C …”
    Volltext
    Journal Article
  7. 7
  8. 8

    Unified Compilation for Lossless Compression and Sparse Computing von Donenfeld, Daniel, Chou, Stephen, Amarasinghe, Saman

    Veröffentlicht: IEEE 02.04.2022
    “… This paper shows how to extend sparse tensor algebra compilers to support lossless compression techniques, including variants of run-length encoding and Lempel-Ziv compression …”
    Volltext
    Tagungsbericht
  9. 9

    Low-Rank Tensor Patching Based on Convolutional Sparse Coding for Communication Data Repair von Hu, Yi, Yao, Yuyi, Cheng, Zhen

    ISSN: 1574-017X, 1875-905X
    Veröffentlicht: Amsterdam Hindawi 05.09.2022
    Veröffentlicht in Mobile information systems (05.09.2022)
    “… ). Based on the low-rank nature of the tensor, adding convolutional sparse coding (CSC) can well represent the characteristics of the high-frequency part of the information to handle the details while recovering the global information …”
    Volltext
    Journal Article
  10. 10

    Multimodal classification of drug-naïve first-episode schizophrenia combining anatomical, diffusion and resting state functional resonance imaging von Zhuang, Huixiang, Liu, Ruihao, Wu, Chaowei, Meng, Ziyu, Wang, Danni, Liu, Dengtang, Liu, Manhua, Li, Yao

    ISSN: 0304-3940, 1872-7972, 1872-7972
    Veröffentlicht: Ireland Elsevier B.V 13.07.2019
    Veröffentlicht in Neuroscience letters (13.07.2019)
    “… •To reduce the feature dimension of multimodal data, sparse coding is applied for feature selection and multi-kernel support vector machine is applied for feature combination and classification …”
    Volltext
    Journal Article
  11. 11

    Direct Conversion: Accelerating Convolutional Neural Networks Utilizing Sparse Input Activation von Lee, Won-Hyuk, Roh, Si-Dong, Park, Sangki, Chung, Ki-Seok

    ISSN: 2577-1647
    Veröffentlicht: IEEE 18.10.2020
    “… If weights are sparse, most results of convolution operations will be zeroes. Although several studies have proposed methods to utilize the weight sparsity to avoid …”
    Volltext
    Tagungsbericht
  12. 12

    Hyperspectral Imaging and Applications

    ISBN: 9783039215232, 9783039215225, 3039215221, 303921523X
    Veröffentlicht: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
    “… Due to advent of sensor technology, hyperspectral imaging has become an emerging technology in remote sensing. Many problems, which cannot be resolved by …”
    Volltext
    E-Book
  13. 13

    Spectral-Spatial KerSparseBands Selector von Wang, Min, Feng, Zhixi, Yang, Shuyuan

    ISSN: 1939-1404, 2151-1535
    Veröffentlicht: Piscataway IEEE 01.09.2016
    “… to the spectral-spatial joint sparse coding (SC) of labels. Moreover, a new tensor-multiple measurement vector (TMMV …”
    Volltext
    Journal Article
  14. 14

    Sparse Kronecker Canonical Polyadic Decomposition for Convolutional Neural Networks Compression von Qi, Mengmeng, Wang, Dingheng, Yang, Wei, Wang, Fuyong, Liu, Zhongxin, Chen, Zengqiang

    Veröffentlicht: IEEE 21.08.2024
    “… Among the numerous approaches to lightweighting, tensor decomposition methods have demonstrated their unique advantages such as conciseness, flexibility, and the theory of low-rank approximation …”
    Volltext
    Tagungsbericht
  15. 15

    Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach von Harandi, Mehrtash T, Sanderson, Conrad, Hartley, Richard, Lovell, Brian C

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.04.2013
    Veröffentlicht in arXiv.org (16.04.2013)
    “… ), we propose to perform sparse coding by embedding Riemannian manifolds into reproducing kernel Hilbert spaces …”
    Volltext
    Paper
  16. 16

    Sparse machine learning models in bioinformatics von Li, Yifeng

    ISBN: 0494986433, 9780494986431
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2014
    “… The meaning of parsimony is twofold in machine learning: either the structure or (and) the parameter of a model can be sparse …”
    Volltext
    Dissertation
  17. 17

    Random projections on manifolds of Symmetric Positive Definite matrices for image classification von Alavi, Azadeh, Wiliem, Arnold, Kun Zhao, Lovell, Brian C., Sanderson, Conrad

    ISSN: 1550-5790
    Veröffentlicht: IEEE 01.03.2014
    “… ) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information …”
    Volltext
    Tagungsbericht
  18. 18

    Random Projections on Manifolds of Symmetric Positive Definite Matrices for Image Classification von Alavi, Azadeh, Arnold Wiliem, Zhao, Kun, Lovell, Brian C, Sanderson, Conrad

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.03.2014
    Veröffentlicht in arXiv.org (04.03.2014)
    “… ) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information …”
    Volltext
    Paper
  19. 19

    Face recognition and facial attribute analysis from unconstrained visual data von Ho, Huy Tho

    ISBN: 9781321325935, 1321325932
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2014
    “… Analyzing human faces from visual data has been one of the most active research areas in the computer vision community. However, it is a very challenging …”
    Volltext
    Dissertation