Suchergebnisse - K‐means cluster algorithm parameter determination

  1. 1

    Urban storm flood simulation using improved SWMM based on Kmeans clustering of parameter samples von Sun, Yue, Liu, Chengshuai, Du, Xian, Yang, Fan, Yao, Yichen, Soomro, Shan‐e‐hyder, Hu, Caihong

    ISSN: 1753-318X, 1753-318X
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.12.2022
    Veröffentlicht in Journal of flood risk management (01.12.2022)
    “… Calibrated uncertain parameters from 76 papers were selected as samples, and the Kmeans clustering algorithm was used to cluster and calculate the parameter values …”
    Volltext
    Journal Article
  2. 2

    Determination of the appropriate parameters for Kmeans clustering using selection of region clusters based on density DBSCAN (SRCD‐DBSCAN) von Limwattanapibool, Onapa, Arch‐int, Somjit

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.06.2017
    Veröffentlicht in Expert systems (01.06.2017)
    “… An inappropriate determination of the number of clusters or the initial cluster centre decreases the accuracy of Kmeans clustering …”
    Volltext
    Journal Article
  3. 3

    Search Space Reduction for Determination of Earthquake Source Parameters Using PCA and k-Means Clustering von Lee, Seongjae, Kim, Taehyoun

    ISSN: 1687-725X, 1687-7268
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 07.09.2020
    Veröffentlicht in Journal of sensors (07.09.2020)
    “… The characteristics of an earthquake can be derived by estimating the source geometries of the earthquake using parameter inversion that minimizes the L2 norm of residuals between the measured …”
    Volltext
    Journal Article
  4. 4

    Enhanced Multi‐Objective Optimization Model for Bridge Performance Assessment and Prediction, Based on Improved PCA, KMeans Clustering, and Kaplan–Meier Survival Algorithm von Gui, Chengzhong, Duan, Zhi, Huang, Zuwei, Sun, Zhiguo, Qiao, Wei, Cheng, Yu

    ISSN: 2577-8196, 2577-8196
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2025
    Veröffentlicht in Engineering reports (Hoboken, N.J.) (01.01.2025)
    “… ‐source heterogeneous data, selection of key sub‐parameters using Principal Component Analysis (PCA), enhanced K …”
    Volltext
    Journal Article
  5. 5

    Research on Urban Storm Flood Simulation by Coupling K-means Machine Learning Algorithm and GIS Spatial Analysis Technology into SWMM Model von Liu, Chengshuai, Hu, Caihong, Zhao, Chenchen, Sun, Yue, Xie, Tianning, Wang, Huiliang

    ISSN: 0920-4741, 1573-1650
    Veröffentlicht: Dordrecht Springer Netherlands 01.04.2024
    Veröffentlicht in Water resources management (01.04.2024)
    “… The K-means clustering machine learning algorithm is used to determine the uncertain parameters of the SWMM model, while GIS spatial analysis techniques enhance the two-dimensional realism of flood simulation …”
    Volltext
    Journal Article
  6. 6

    Determination of Customer Satisfaction using Improved K-means algorithm von Zare, Hamed, Emadi, Sima

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
    Veröffentlicht in Soft computing (Berlin, Germany) (01.11.2020)
    “… ). To accurately predict customer’s behaviour, clustering, especially K -means, is one of the most important data mining techniques used in customer relationship management marketing, with which it is possible to identify customers …”
    Volltext
    Journal Article
  7. 7

    Open cluster membership probability based on K-means clustering algorithm von El Aziz, Mohamed Abd, Selim, I. M., Essam, A.

    ISSN: 0922-6435, 1572-9508
    Veröffentlicht: Dordrecht Springer Netherlands 01.08.2016
    Veröffentlicht in Experimental astronomy (01.08.2016)
    “… So in this paper, we presented a new method for the determination of open cluster membership based on K-means clustering algorithm …”
    Volltext
    Journal Article
  8. 8

    Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering von Sakong, Jae, Woo, Sung-Choong, Kim, Tae-Won

    ISSN: 0734-743X, 1879-3509
    Veröffentlicht: Oxford Elsevier Ltd 01.12.2019
    Veröffentlicht in International journal of impact engineering (01.12.2019)
    “… •A method to determine the fragment distribution from the particle dispersion by using a clustering algorithm was suggested …”
    Volltext
    Journal Article
  9. 9

    Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function von Yin, Jiandong, Sun, Hongzan, Yang, Jiawen, Guo, Qiyong

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 04.02.2014
    Veröffentlicht in PloS one (04.02.2014)
    “… Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means …”
    Volltext
    Journal Article
  10. 10

    Large-Scale Automatic K-Means Clustering for Heterogeneous Many-Core Supercomputer von Yu, Teng, Zhao, Wenlai, Liu, Pan, Janjic, Vladimir, Yan, Xiaohan, Wang, Shicai, Fu, Haohuan, Yang, Guangwen, Thomson, John

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.05.2020
    “… Furthermore, we propose an automatic hyper-parameter determination process for k-means clustering, by automatically generating and executing the clustering …”
    Volltext
    Journal Article
  11. 11

    Non-hierarchical cluster analysis for determination of resistance to worm infection in meat sheep von Araujo, Johnny Iglesias Mendes, da Silva Santos, Natanael Pereira, de Oliveira, Max Brandão, Sena, Luciano Silva, Biagiotti, Daniel, de Araujo Rego Neto, Aurino, Sarmento, José Lindenberg Rocha

    ISSN: 0049-4747, 1573-7438, 1573-7438
    Veröffentlicht: Dordrecht Springer Netherlands 01.03.2021
    Veröffentlicht in Tropical animal health and production (01.03.2021)
    “… Inês sheep by combining different sets of gastrointestinal parasite resistance indicator traits, using the k -means algorithm …”
    Volltext
    Journal Article
  12. 12

    Combining data-intelligent algorithms for the assessment and predictive modeling of groundwater resources quality in parts of southeastern Nigeria von Egbueri, Johnbosco C., Agbasi, Johnson C.

    ISSN: 0944-1344, 1614-7499, 1614-7499
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
    “… Machine learning algorithms have proven useful in the estimation, classification, and prediction of water quality parameters …”
    Volltext
    Journal Article
  13. 13

    Unsupervised machine learning effectively clusters pediatric spastic cerebral palsy patients for determination of optimal responders to selective dorsal rhizotomy von Hou, Xiaobin, Yan, Yanyun, Zhan, Qijia, Wang, Junlu, Xiao, Bo, Jiang, Wenbin

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 19.05.2023
    Veröffentlicht in Scientific reports (19.05.2023)
    “… Spasticity of lower limbs, the number of target muscles, motor functions, and other clinical parameters were used as input variables for unsupervised machine learning to cluster all included patients …”
    Volltext
    Journal Article
  14. 14

    Determination of essential phenotypic elements of clusters in high-dimensional entities—DEPECHE von Theorell, Axel, Bryceson, Yenan Troi, Theorell, Jakob

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 07.03.2019
    Veröffentlicht in PloS one (07.03.2019)
    “… complex data interpretable. Here, we introduce DEPECHE, a rapid, parameter free, sparse k-means-based algorithm for clustering of multi- and megavariate single-cell data …”
    Volltext
    Journal Article
  15. 15

    A Hybrid-Weight TOPSIS and Clustering Approach for Optimal GNSS Station Selection in Multi-GNSS Precise Orbit Determination von Jin, Weitong, Li, Xing, Chen, Liang, Sheng, Chuanzhen, Yuan, Yongqiang, Zhang, Keke, Li, Xingxing, Zhang, Jingkui, Zhang, Xulun, Yu, Baoguo

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.11.2025
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.11.2025)
    “… ) model with spherical k-means clustering, effectively resolving the challenge of balancing station data quality with uniform spatial distribution …”
    Volltext
    Journal Article
  16. 16

    Determination of Interrupt-Coalescence Latency of Remote Hosts Through Active Measurement von Salehin, Khondaker, Sahasrabudhe, Vinitmadhukar, Rojas-Cessa, Roberto

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2018
    Veröffentlicht in IEEE access (01.01.2018)
    “… Even though the adoption of IC has its benefits, the additional delay negatively affects the hosts that are involved in the performance measurement of various network parameters and time-sensitive applications …”
    Volltext
    Journal Article
  17. 17

    An Adaptive Parameter-Free Optimal Number of Market Segments Estimation Algorithm Based on a New Internal Validity Index von Qi, Jianfang, Li, Yue, Jin, Haibin, Feng, Jianying, Tian, Dong, Mu, Weisong

    ISSN: 1526-1506, 1526-1492, 1526-1506
    Veröffentlicht: Henderson Tech Science Press 2023
    “… ) Between-Within-Connectivity (BWCON) and a new stable clustering algorithm Natural-SDK-means++ (NSDK-means++) in a novel way. First, to complete the evaluation dimensions …”
    Volltext
    Journal Article
  18. 18

    Determination of cluster number in clustering microarray data von Shen, Judong, Chang, Shing I., Lee, E. Stanley, Deng, Youping, Brown, Susan J.

    ISSN: 0096-3003, 1873-5649
    Veröffentlicht: New York, NY Elsevier Inc 15.10.2005
    Veröffentlicht in Applied mathematics and computation (15.10.2005)
    “… Although various algorithms have been proposed for the clustering of microarray data, the main difficulty remains to be the determination of the optimal number of clusters …”
    Volltext
    Journal Article
  19. 19

    Analysis of the mandibular canal course using unsupervised machine learning algorithm von Kim, Young Hyun, Jeon, Kug Jin, Lee, Chena, Choi, Yoon Joo, Jung, Hoi-In, Han, Sang-Sun

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 19.11.2021
    Veröffentlicht in PloS one (19.11.2021)
    “… Cluster analysis was carried out as follows: parameter measurement, parameter normalization, cluster tendency evaluation, optimal number of clusters determination, and k-means cluster analysis …”
    Volltext
    Journal Article
  20. 20

    Fuzzy K-Means Clustering With Discriminative Embedding von Nie, Feiping, Zhao, Xiaowei, Wang, Rong, Li, Xuelong, Li, Zhihui

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.03.2022
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.03.2022)
    “… Fuzzy K-Means (FKM) clustering is of great importance for analyzing unlabeled data …”
    Volltext
    Journal Article