Suchergebnisse - Inference from stochastic processes and prediction

  1. 1

    Causal inference for multivariate stochastic process prediction von Cabuz, Simona, Abreu, Giuseppe

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.06.2018
    Veröffentlicht in Information sciences (01.06.2018)
    “… Numerous real world systems of major interest are modeled as sets of analog continuous stochastic processes with delayed and varying causal relationships …”
    Volltext
    Journal Article
  2. 2

    Causal inference for multivariate stochastic process prediction von Simona Maria Cabuz, Giuseppe Abreu

    ISSN: 0020-0255
    Veröffentlicht: Elsevier BV 01.06.2018
    Veröffentlicht in Information Sciences (01.06.2018)
    Volltext
    Journal Article
  3. 3

    Multivariate Stochastic Rayleigh Process: Computational Aspects, Statistical Inference, Estimation and Prediction Analysis von Chakroune, Yassine, El Azri, Abdenbi, Nafidi, Ahmed, Makroz, Ilyasse

    ISSN: 1387-5841, 1573-7713
    Veröffentlicht: New York Springer US 01.12.2025
    Veröffentlicht in Methodology and computing in applied probability (01.12.2025)
    “… The main aim of this paper is to introduce a new multivariate stochastic Rayleigh diffusion process as an extension of the univariate stochastic Rayleigh model, which has been the subject of much …”
    Volltext
    Journal Article
  4. 4

    Time series : theory and methods von Brockwell, P. J. (Peter J.), Davis, R. A. (Richard A.)

    ISBN: 1441903194, 9781441903198, 0387974296, 9781441904003, 9780387974293, 144190400X
    ISSN: 0172-7397
    Veröffentlicht: New York, NY Springer 2006
    “… This paperback edition is a reprint of the 1991 edition. Time Series: Theory and Methods is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time …”
    Volltext
    E-Book Buch
  5. 5

    Bayesian analysis of stochastic process models von Ríos Insua, David, Ruggeri, Fabrizio, Wiper, Michael P.

    ISBN: 0470744537, 9780470744536, 047097592X, 9780470975923, 1118304039, 9781118304037, 0470975911, 9780470975916
    Veröffentlicht: Chichester, West Sussex, U.K Wiley 2012
    “… * Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research …”
    Volltext
    E-Book Buch
  6. 6

    Robust Two-Step Wavelet-Based Inference for Time Series Models von Guerrier, Stéphane, Molinari, Roberto, Victoria-Feser, Maria-Pia, Xu, Haotian

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Veröffentlicht: United States Taylor & Francis 02.10.2022
    Veröffentlicht in Journal of the American Statistical Association (02.10.2022)
    “… Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics …”
    Volltext
    Journal Article
  7. 7

    An artificial neural network supported stochastic process for degradation modeling and prediction von Liu, Di, Wang, Shaoping

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.10.2021
    Veröffentlicht in Reliability engineering & system safety (01.10.2021)
    “… •The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical …”
    Volltext
    Journal Article
  8. 8

    Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes von Warne, David J., Prescott, Thomas P., Baker, Ruth E., Simpson, Matthew J.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 15.11.2022
    Veröffentlicht in Journal of computational physics (15.11.2022)
    “… Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data …”
    Volltext
    Journal Article
  9. 9

    Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models von Li, Dayang, Marshall, Lucy, Liang, Zhongmin, Sharma, Ashish, Zhou, Yan

    ISSN: 0043-1397, 1944-7973
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.09.2021
    Veröffentlicht in Water resources research (01.09.2021)
    “… Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI …”
    Volltext
    Journal Article
  10. 10

    Leapfrog Diffusion Model for Stochastic Trajectory Prediction von Mao, Weibo, Xu, Chenxin, Zhu, Qi, Chen, Siheng, Wang, Yanfeng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2023
    “… To model the indeterminacy of human behaviors, stochastic trajectory prediction requires a sophisticated multi-modal distribution of future trajectories …”
    Volltext
    Tagungsbericht
  11. 11

    Inference and prediction for stochastic models of biological populations undergoing migration and proliferation von Simpson, Matthew J, Plank, Michael J

    ISSN: 1742-5662, 1742-5662
    Veröffentlicht: England 01.10.2025
    Veröffentlicht in Journal of the Royal Society interface (01.10.2025)
    “… Parameter inference is a critical step in the process of interpreting biological data using mathematical models …”
    Weitere Angaben
    Journal Article
  12. 12

    Effluent trading planning and its application in water quality management: A factor-interaction perspective von Zhang, J.L., Li, Y.P., Zeng, X.T., Huang, G.H., Li, Y., Zhu, Y., Kong, F.L., Xi, M., Liu, J.

    ISSN: 0013-9351, 1096-0953, 1096-0953
    Veröffentlicht: Netherlands Elsevier Inc 01.01.2019
    Veröffentlicht in Environmental research (01.01.2019)
    “… Bayesian inference is employed for uncertainty analysis of SWAT model parameters and uncertain prediction of nutrient loadings …”
    Volltext
    Journal Article
  13. 13

    Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression von Farid, Maor

    ISSN: 0142-1123, 1879-3452
    Veröffentlicht: Kidlington Elsevier Ltd 01.02.2022
    Veröffentlicht in International journal of fatigue (01.02.2022)
    “… •The current manuscript focuses on a data-driven method for real-time fatigue failure prediction under stochastic loadings …”
    Volltext
    Journal Article
  14. 14
  15. 15

    Collaborative Online RUL Prediction of Multiple Assets With Analytically Recursive Bayesian Inference von Peng, Weiwen, Chen, Yuan, Xu, Ancha, Ye, Zhi-Sheng

    ISSN: 0018-9529, 1558-1721
    Veröffentlicht: New York IEEE 01.03.2024
    Veröffentlicht in IEEE transactions on reliability (01.03.2024)
    “… ) prediction adopt a stochastic process-based degradation model and a computation-intensive parameter estimation method for RUL prediction of a single operating asset …”
    Volltext
    Journal Article
  16. 16

    Deep Bayesian stochastic process model for remaining useful life prediction of rolling bearings von Deng, Minqiang, Xu, Meng, Bian, Wenbin, Liu, Dongying, Deng, Aidong

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: IEEE 19.11.2025
    “… The stochastic process model (SPM) offers a promising approach for remaining useful life (RUL …”
    Volltext
    Journal Article
  17. 17

    Heterogeneous Hypergraph Variational Autoencoder for Link Prediction von Fan, Haoyi, Zhang, Fengbin, Wei, Yuxuan, Li, Zuoyong, Zou, Changqing, Gao, Yue, Dai, Qionghai

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.08.2022
    “… Link prediction aims at inferring missing links or predicting future ones based on the currently observed network …”
    Volltext
    Journal Article
  18. 18

    High‐Frequency Instruments and Identification‐Robust Inference for Stochastic Volatility Models von Ahsan, Md. Nazmul, Dufour, Jean‐Marie

    ISSN: 0143-9782, 1467-9892
    Veröffentlicht: Oxford, UK John Wiley & Sons, Ltd 01.03.2025
    Veröffentlicht in Journal of time series analysis (01.03.2025)
    “… We study parameter inference problems in the proposed framework with nonstationary stochastic volatility and exogenous predictors in the latent volatility process. Identification …”
    Volltext
    Journal Article
  19. 19

    Scalable Semisupervised GMM for Big Data Quality Prediction in Multimode Processes von Yao, Le, Ge, Zhiqiang

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.05.2019
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.05.2019)
    “… In this paper, a novel variational inference semisupervised Gaussian mixture model (VI-S 2 GMM …”
    Volltext
    Journal Article
  20. 20

    Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators von Hashemi, Meysam, Vattikonda, Anirudh N., Jha, Jayant, Sip, Viktor, Woodman, Marmaduke M., Bartolomei, Fabrice, Jirsa, Viktor K.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.06.2023
    Veröffentlicht in Neural networks (01.06.2023)
    “… Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders …”
    Volltext
    Journal Article