Suchergebnisse - Inference from spatial processes

  1. 1

    oSCR: a spatial capture–recapture R package for inference about spatial ecological processes von Sutherland, Chris, Royle, J. Andrew, Linden, Daniel W.

    ISSN: 0906-7590, 1600-0587
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.09.2019
    Veröffentlicht in Ecography (Copenhagen) (01.09.2019)
    “… Spatial capture–recapture (SCR) methods have become widely applied in ecology. The immediate adoption of SCR is due to the fact that it resolves some major criticisms of traditional capture …”
    Volltext
    Journal Article
  2. 2

    Two contrasting spatial processes with a common variogram: inference about spatial models from higher-order statistics von Lark, R. M.

    ISSN: 1351-0754, 1365-2389
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.08.2010
    Veröffentlicht in European journal of soil science (01.08.2010)
    “… A key step in geostatistical analysis is the estimation of a variogram function that describes the spatial covariance structure of the variable in question …”
    Volltext
    Journal Article
  3. 3

    Inference from spatial processes von Gotway, Carol Anne

    ISBN: 9798641882529
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.1989
    “… This gives rise to a wide variety of difficult but fascinating statistical problems. This dissertation considers spatial statistical inference in the areas of estimation, hypothesis testing, and prediction …”
    Volltext
    Dissertation
  4. 4

    Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency von Tenan, Simone, Pedrini, Paolo, Bragalanti, Natalia, Groff, Claudio, Sutherland, Chris

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 03.10.2017
    Veröffentlicht in PloS one (03.10.2017)
    “… , capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available …”
    Volltext
    Journal Article
  5. 5

    On spatial processes and asymptotic inference under near-epoch dependence von Jenish, Nazgul, Prucha, Ingmar R.

    ISSN: 0304-4076, 1872-6895
    Veröffentlicht: Netherlands Elsevier B.V 01.09.2012
    Veröffentlicht in Journal of econometrics (01.09.2012)
    “… -mixing process, is shown to be closed under infinite transformations, and thus accommodates models with spatial dynamics …”
    Volltext
    Journal Article
  6. 6

    Spatial scale modulates the inference of metacommunity assembly processes von Viana, Duarte S., Chase, Jonathan M.

    ISSN: 0012-9658, 1939-9170
    Veröffentlicht: United States John Wiley and Sons, Inc 01.02.2019
    Veröffentlicht in Ecology (Durham) (01.02.2019)
    “… The abundance and distribution of species across the landscape depend on the interaction between local, spatial, and stochastic processes …”
    Volltext
    Journal Article
  7. 7
  8. 8

    Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation von Vihrs, Ninna, Møller, Jesper, Gelfand, Alan E.

    ISSN: 0303-6898, 1467-9469
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.03.2022
    Veröffentlicht in Scandinavian journal of statistics (01.03.2022)
    “… In this article, we propose a doubly stochastic spatial point process model with both aggregation and repulsion …”
    Volltext
    Journal Article
  9. 9

    Stochastic spatial stream networks for scalable inferences of riverscape processes von Lu, Xinyi, Kaplan, Andee, Kanno, Yoichiro, Valentine, George, Rash, Jacob M., Hooten, Mevin

    ISSN: 2211-6753, 2211-6753
    Veröffentlicht: Elsevier B.V 01.06.2025
    Veröffentlicht in Spatial statistics (01.06.2025)
    “… Spatial stream networks (SSN) models characterize correlated ecological processes in dendritic ecosystem …”
    Volltext
    Journal Article
  10. 10

    Bayesian inference for finite populations under spatial process settings von Chan‐Golston, Alec M., Banerjee, Sudipto, Handcock, Mark S.

    ISSN: 1180-4009, 1099-095X
    Veröffentlicht: 01.05.2020
    Veröffentlicht in Environmetrics (London, Ont.) (01.05.2020)
    “… Our innovation here is a framework that achieves inference for finite population quantities in spatial process settings …”
    Volltext
    Journal Article
  11. 11

    Spatial Causality: A Systematic Review on Spatial Causal Inference von Akbari, Kamal, Winter, Stephan, Tomko, Martin

    ISSN: 0016-7363, 1538-4632
    Veröffentlicht: 01.01.2023
    Veröffentlicht in Geographical analysis (01.01.2023)
    “… Yet, studies on spatial causal inference are still rare. Causal inference on spatial processes is faced with additional challenges, such as spatial dependency, spatial heterogeneity, and spatial effects …”
    Volltext
    Journal Article
  12. 12

    Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data von Zhang, Lu, Banerjee, Sudipto

    ISSN: 0006-341X, 1541-0420, 1541-0420
    Veröffentlicht: United States Blackwell Publishing Ltd 01.06.2022
    Veröffentlicht in Biometrics (01.06.2022)
    “… Multivariate latent spatial process models have proved effective in driving statistical inference and rendering better predictive inference at arbitrary locations for the spatial process. High …”
    Volltext
    Journal Article
  13. 13

    Likelihood and Non-parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling von Berthelsen, Kasper K., Møller, Jesper

    ISSN: 0303-6898, 1467-9469
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.09.2003
    Veröffentlicht in Scandinavian journal of statistics (01.09.2003)
    “… We consider the combination of path sampling and perfect simulation in the context of both likelihood inference and non-parametric Bayesian inference for pairwise interaction point processes …”
    Volltext
    Journal Article
  14. 14

    Optimizing the choice of a spatial weighting matrix in eigenvector-based methods von Bauman, David, Drouet, Thomas, Fortin, Marie-Josée, Dray, Stéphane

    ISSN: 0012-9658, 1939-9170
    Veröffentlicht: United States John Wiley and Sons, Inc 01.10.2018
    Veröffentlicht in Ecology (Durham) (01.10.2018)
    “… Eigenvector-mapping methods such as Moran’s eigenvector maps (MEM) are derived from a spatial weighting matrix (SWM …”
    Volltext
    Journal Article
  15. 15

    Unifying spatial and social network analysis in disease ecology von Albery, Gregory F., Kirkpatrick, Lucinda, Firth, Josh A., Bansal, Shweta, Farine, Damien

    ISSN: 0021-8790, 1365-2656, 1365-2656
    Veröffentlicht: England Blackwell Publishing Ltd 01.01.2021
    Veröffentlicht in The Journal of animal ecology (01.01.2021)
    “… Many investigations into sociality and disease may nevertheless be subject to cryptic spatial variation, so ignoring spatial processes can limit inference regarding disease dynamics …”
    Volltext
    Journal Article
  16. 16

    Approximate Bayesian inference for large spatial datasets using predictive process models von Eidsvik, Jo, Finley, Andrew O., Banerjee, Sudipto, Rue, Håvard

    ISSN: 0167-9473, 1872-7352
    Veröffentlicht: Elsevier B.V 01.06.2012
    Veröffentlicht in Computational statistics & data analysis (01.06.2012)
    “… With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference …”
    Volltext
    Journal Article
  17. 17

    Beyond description: the active and effective way to infer processes from spatial patterns von McIntire, Eliot J.B, Fajardo, Alex

    ISSN: 0012-9658, 1939-9170
    Veröffentlicht: Washington, DC Ecological Society of America 2009
    Veröffentlicht in Ecology (Durham) (2009)
    “… The ecological processes that create spatial patterns have been examined by direct measurement and through measurement of patterns resulting from experimental manipulations …”
    Volltext
    Journal Article
  18. 18

    Inference for Clustered Inhomogeneous Spatial Point Processes von Henrys, P. A., Brown, P. E.

    ISSN: 0006-341X, 1541-0420, 1541-0420
    Veröffentlicht: Malden, USA Blackwell Publishing Inc 01.06.2009
    Veröffentlicht in Biometrics (01.06.2009)
    “… We propose a method to test for significant differences in the levels of clustering between two spatial point processes (cases and controls …”
    Volltext
    Journal Article
  19. 19

    Including a spatial predictive process in band recovery models improves inference for Lincoln estimates of animal abundance von Gonnerman, Matthew, Linden, Daniel W., Shea, Stephanie A., Sullivan, Kelsey, Kamath, Pauline, Blomberg, Erik

    ISSN: 2045-7758, 2045-7758
    Veröffentlicht: England John Wiley & Sons, Inc 01.10.2022
    Veröffentlicht in Ecology and evolution (01.10.2022)
    “… Abundance estimation is a critical component of conservation planning, particularly for exploited species where managers set regulations to restrict harvest …”
    Volltext
    Journal Article
  20. 20

    Inference for Spatial Processes Using Subsampling: a Simulation Study von Kaiser, Mark S., Hsu, Nan-Jung, Cressie, Noel, Lahiri, Soumendra N.

    ISSN: 1180-4009, 1099-095X
    Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.09.1997
    Veröffentlicht in Environmetrics (London, Ont.) (01.09.1997)
    “… One quantity that captures the empirical distribution of ecological measurements is the spatial cumulative distribution function (SCDF …”
    Volltext
    Journal Article Tagungsbericht