Suchergebnisse - Hydrological Modeling using Machine Learning Methods

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis von Aydin, Olgu, Kilar, Hatice

    ISSN: 0177-798X, 1434-4483
    Veröffentlicht: Vienna Springer Vienna 01.11.2025
    Veröffentlicht in Theoretical and applied climatology (01.11.2025)
    “… In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning …”
    Volltext
    Journal Article
  6. 6

    Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods von Yang, Yang, Chui, Ting Fong May

    ISSN: 1607-7938, 1027-5606, 1607-7938
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 11.11.2021
    Veröffentlicht in Hydrology and earth system sciences (11.11.2021)
    “… This study thus proposes a machine learning (ML) method to directly learn the statistical correlations between the hydrological responses of SuDS and the forcing variables at sub-hourly timescales from observation data …”
    Volltext
    Journal Article
  7. 7

    Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany von Schmidt, Lennart, Heße, Falk, Attinger, Sabine, Kumar, Rohini

    ISSN: 0043-1397, 1944-7973
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.05.2020
    Veröffentlicht in Water resources research (01.05.2020)
    “… Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever …”
    Volltext
    Journal Article
  8. 8

    Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region von Huynh, Ngo Nghi Truyen, Garambois, Pierre‐André, Colleoni, François, Renard, Benjamin, Roux, Hélène, Demargne, Julie, Jay‐Allemand, Maxime, Javelle, Pierre

    ISSN: 0043-1397, 1944-7973
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.11.2024
    Veröffentlicht in Water resources research (01.11.2024)
    “… Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data …”
    Volltext
    Journal Article
  9. 9

    Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron von Wang, Yuan‐Heng, Gupta, Hoshin V.

    ISSN: 0043-1397, 1944-7973
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.10.2024
    Veröffentlicht in Water resources research (01.10.2024)
    “… We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment …”
    Volltext
    Journal Article
  10. 10

    AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods von Abbas, Ather, Boithias, Laurie, Pachepsky, Yakov, Kim, Kyunghyun, Chun, Jong Ahn, Cho, Kyung Hwa

    ISSN: 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959X
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 08.04.2022
    Veröffentlicht in Geoscientific Model Development (08.04.2022)
    “… advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process …”
    Volltext
    Journal Article
  11. 11

    Assessing climate change and human impacts on runoff and hydrological droughts in the Yellow River Basin using a machine learning-enhanced hydrological modeling approach von Wang, Lei, Li, Yi, Biswas, Asim, Zhao, Yong, Niu, Ben, Siddique, Kadambot.H.M.

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Veröffentlicht: England Elsevier Ltd 01.04.2025
    Veröffentlicht in Journal of environmental management (01.04.2025)
    “… Analyzing the impacts of climate change (CC) and human activities (HA) on hydrological events is important for water resource management …”
    Volltext
    Journal Article
  12. 12

    Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms von Band, Shahab S., Janizadeh, Saeid, Chandra Pal, Subodh, Saha, Asish, Chakrabortty, Rabin, Melesse, Assefa M., Mosavi, Amirhosein

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 31.10.2020
    Veröffentlicht in Remote sensing (Basel, Switzerland) (31.10.2020)
    “… Thus, to detect flash flood-prone zones in this study area, five machine learning (ML) algorithms were tested …”
    Volltext
    Journal Article
  13. 13

    Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow von Reis, Guilherme Barbosa, da Silva, Demetrius David, Fernandes Filho, Elpídio Inácio, Moreira, Michel Castro, Veloso, Gustavo Vieira, Fraga, Micael de Souza, Pinheiro, Sávio Augusto Rocha

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Veröffentlicht: England Elsevier Ltd 15.07.2021
    Veröffentlicht in Journal of environmental management (15.07.2021)
    “… There are different methods for predicting streamflow, and, recently machine learning has been widely used for this purpose …”
    Volltext
    Journal Article
  14. 14

    Assessing future hydrological and sediment transport response of an urban watershed using a machine learning–based land cover change model von Peker, İsmail Bilal, Cuceloglu, Gokhan, Sökmen, Eren Dağra, Gülbaz, Sezar

    ISSN: 1573-2959, 0167-6369, 1573-2959
    Veröffentlicht: Cham Springer International Publishing 13.10.2025
    Veröffentlicht in Environmental monitoring and assessment (13.10.2025)
    “… Modeling LCC using machine learning techniques enhances the ability to generate realistic future scenarios, providing a robust basis for informed watershed management decisions …”
    Volltext
    Journal Article
  15. 15

    Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques von Karimizadeh, Keivan, Yi, Jaeeung

    ISSN: 0920-4741, 1573-1650
    Veröffentlicht: Dordrecht Springer Netherlands 01.10.2023
    Veröffentlicht in Water resources management (01.10.2023)
    “… The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT …”
    Volltext
    Journal Article
  16. 16

    Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model von Yin, Wenjie, Zhang, Gangqiang, Liu, Futian, Zhang, Dasheng, Zhang, Xiuping, Chen, Sheming

    ISSN: 1431-2174, 1435-0157
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
    Veröffentlicht in Hydrogeology journal (01.05.2022)
    “… The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional …”
    Volltext
    Journal Article
  17. 17

    Regionalization of hydrological model parameters using gradient boosting machine von Song, Zhihong, Xia, Jun, Wang, Gangsheng, She, Dunxian, Hu, Chen, Hong, Si

    ISSN: 1607-7938, 1027-5606, 1607-7938
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 31.01.2022
    Veröffentlicht in Hydrology and earth system sciences (31.01.2022)
    “… The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins …”
    Volltext
    Journal Article
  18. 18

    Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria von Achite, Mohammed, Jehanzaib, Muhammad, Elshaboury, Nehal, Kim, Tae-Woong

    ISSN: 2073-4441, 2073-4441
    Veröffentlicht: Basel MDPI AG 01.02.2022
    Veröffentlicht in Water (Basel) (01.02.2022)
    “… In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT …”
    Volltext
    Journal Article
  19. 19

    Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models von Ding, Bingbing, Yu, Xinxiao, Jia, Guodong

    ISSN: 0043-1397, 1944-7973
    Veröffentlicht: Washington John Wiley & Sons, Inc 01.05.2025
    Veröffentlicht in Water resources research (01.05.2025)
    “… This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF …”
    Volltext
    Journal Article
  20. 20

    Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling von Houénafa, Sianou Ezéckiel, Johnson, Olatunji, Ronoh, Erick K., Moore, Stephen E.

    ISSN: 2590-1230, 2590-1230
    Veröffentlicht: Elsevier B.V 01.03.2025
    Veröffentlicht in Results in engineering (01.03.2025)
    “… Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models …”
    Volltext
    Journal Article