Suchergebnisse - Hydrological Modeling using Machine Learning Methods
-
1
Hydrodynamic Investigation of Laguna Lake, Philippines for Water Security and Flood Risk Management of Metro Manila
ISSN: 2199-899XVeröffentlicht: Copernicus GmbH 19.04.2024Veröffentlicht in Proceedings of IAHS (19.04.2024)Volltext
Journal Article -
2
Long short-term memory models of water quality in inland water environments
ISSN: 2589-9147, 2589-9147Veröffentlicht: Elsevier BV 01.12.2023Veröffentlicht in Water Research X (01.12.2023)Volltext
Journal Article -
3
Comparative study on the calculation methods of ecological base flow in a mountainous river
ISSN: 2296-665XVeröffentlicht: Frontiers Media SA 04.08.2022Veröffentlicht in Frontiers in Environmental Science (04.08.2022)Volltext
Journal Article -
4
A Sustainable Early Warning System Using Rolling Forecasts Based on ANN and Golden Ratio Optimization Methods to Accurately Predict Real-Time Water Levels and Flash Flood
ISSN: 1424-8220Veröffentlicht: MDPI AG 05.07.2021Veröffentlicht in Sensors (05.07.2021)Volltext
Journal Article -
5
The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis
ISSN: 0177-798X, 1434-4483Veröffentlicht: Vienna Springer Vienna 01.11.2025Veröffentlicht in Theoretical and applied climatology (01.11.2025)“… In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning …”
Volltext
Journal Article -
6
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
ISSN: 1607-7938, 1027-5606, 1607-7938Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 11.11.2021Veröffentlicht in Hydrology and earth system sciences (11.11.2021)“… This study thus proposes a machine learning (ML) method to directly learn the statistical correlations between the hydrological responses of SuDS and the forcing variables at sub-hourly timescales from observation data …”
Volltext
Journal Article -
7
Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany
ISSN: 0043-1397, 1944-7973Veröffentlicht: Washington John Wiley & Sons, Inc 01.05.2020Veröffentlicht in Water resources research (01.05.2020)“… Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever …”
Volltext
Journal Article -
8
Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region
ISSN: 0043-1397, 1944-7973Veröffentlicht: Washington John Wiley & Sons, Inc 01.11.2024Veröffentlicht in Water resources research (01.11.2024)“… Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data …”
Volltext
Journal Article -
9
Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron
ISSN: 0043-1397, 1944-7973Veröffentlicht: Washington John Wiley & Sons, Inc 01.10.2024Veröffentlicht in Water resources research (01.10.2024)“… We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment …”
Volltext
Journal Article -
10
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
ISSN: 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959XVeröffentlicht: Katlenburg-Lindau Copernicus GmbH 08.04.2022Veröffentlicht in Geoscientific Model Development (08.04.2022)“… advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process …”
Volltext
Journal Article -
11
Assessing climate change and human impacts on runoff and hydrological droughts in the Yellow River Basin using a machine learning-enhanced hydrological modeling approach
ISSN: 0301-4797, 1095-8630, 1095-8630Veröffentlicht: England Elsevier Ltd 01.04.2025Veröffentlicht in Journal of environmental management (01.04.2025)“… Analyzing the impacts of climate change (CC) and human activities (HA) on hydrological events is important for water resource management …”
Volltext
Journal Article -
12
Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms
ISSN: 2072-4292, 2072-4292Veröffentlicht: Basel MDPI AG 31.10.2020Veröffentlicht in Remote sensing (Basel, Switzerland) (31.10.2020)“… Thus, to detect flash flood-prone zones in this study area, five machine learning (ML) algorithms were tested …”
Volltext
Journal Article -
13
Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow
ISSN: 0301-4797, 1095-8630, 1095-8630Veröffentlicht: England Elsevier Ltd 15.07.2021Veröffentlicht in Journal of environmental management (15.07.2021)“… There are different methods for predicting streamflow, and, recently machine learning has been widely used for this purpose …”
Volltext
Journal Article -
14
Assessing future hydrological and sediment transport response of an urban watershed using a machine learning–based land cover change model
ISSN: 1573-2959, 0167-6369, 1573-2959Veröffentlicht: Cham Springer International Publishing 13.10.2025Veröffentlicht in Environmental monitoring and assessment (13.10.2025)“… Modeling LCC using machine learning techniques enhances the ability to generate realistic future scenarios, providing a robust basis for informed watershed management decisions …”
Volltext
Journal Article -
15
Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques
ISSN: 0920-4741, 1573-1650Veröffentlicht: Dordrecht Springer Netherlands 01.10.2023Veröffentlicht in Water resources management (01.10.2023)“… The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT …”
Volltext
Journal Article -
16
Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model
ISSN: 1431-2174, 1435-0157Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022Veröffentlicht in Hydrogeology journal (01.05.2022)“… The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional …”
Volltext
Journal Article -
17
Regionalization of hydrological model parameters using gradient boosting machine
ISSN: 1607-7938, 1027-5606, 1607-7938Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 31.01.2022Veröffentlicht in Hydrology and earth system sciences (31.01.2022)“… The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins …”
Volltext
Journal Article -
18
Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria
ISSN: 2073-4441, 2073-4441Veröffentlicht: Basel MDPI AG 01.02.2022Veröffentlicht in Water (Basel) (01.02.2022)“… In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT …”
Volltext
Journal Article -
19
Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models
ISSN: 0043-1397, 1944-7973Veröffentlicht: Washington John Wiley & Sons, Inc 01.05.2025Veröffentlicht in Water resources research (01.05.2025)“… This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF …”
Volltext
Journal Article -
20
Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling
ISSN: 2590-1230, 2590-1230Veröffentlicht: Elsevier B.V 01.03.2025Veröffentlicht in Results in engineering (01.03.2025)“… Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models …”
Volltext
Journal Article