Suchergebnisse - Hybrid forecasting algorithm of cooling load

  1. 1

    Forecasting performance comparison of two hybrid machine learning models for cooling load of a large-scale commercial building von Xuan, Zhou, Xuehui, Zi, Liequan, Liang, Zubing, Fan, Junwei, Yan, Dongmei, Pan

    ISSN: 2352-7102, 2352-7102
    Veröffentlicht: Elsevier Ltd 01.01.2019
    Veröffentlicht in Journal of Building Engineering (01.01.2019)
    “… The hourly cooling load forecasting of a commercial building is very hard to be guaranteed with high accuracy …”
    Volltext
    Journal Article
  2. 2

    Hybrid forecasting model of building cooling load based on EMD-LSTM-Markov algorithm von Huang, Xiaofei, Han, Yangming, Yan, Junwei, Zhou, Xuan

    ISSN: 0378-7788
    Veröffentlicht: Elsevier B.V 15.10.2024
    Veröffentlicht in Energy and buildings (15.10.2024)
    “… Precise forecasting of the cooling load (CL) of buildings is crucial for the efficient functioning of central air conditioning systems …”
    Volltext
    Journal Article
  3. 3

    Cooling Load Forecasting Based On Hybrid Machine-Learning Application With Integration Of Meta-heuristic Algorithm von Xiaohui Zhang, Lili Pei

    ISSN: 2708-9967
    Veröffentlicht: 淡江大學 01.01.2025
    Veröffentlicht in 淡江理工學刊 (01.01.2025)
    “… This research presents hybrid machine learning models integrated with advanced optimization techniques tailored for accurately predicting Cooling Load in buildings …”
    Volltext
    Journal Article
  4. 4

    A hybrid forecasting method for cooling load in large public buildings based on improved long short term memory von Liu, Zongyi, Yu, Junqi, Feng, Chunyong, Su, Yucong, Dai, Junwei, Chen, Yufei

    ISSN: 2352-7102, 2352-7102
    Veröffentlicht: Elsevier Ltd 01.10.2023
    Veröffentlicht in Journal of Building Engineering (01.10.2023)
    “… In order to improve the operational efficiency of the air conditioning system, it is crucial to establish an accurate and effective cooling load forecasting model …”
    Volltext
    Journal Article
  5. 5

    A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine von Gao, Zhikun, Yu, Junqi, Zhao, Anjun, Hu, Qun, Yang, Siyuan

    ISSN: 0360-5442, 1873-6785
    Veröffentlicht: Oxford Elsevier Ltd 01.01.2022
    Veröffentlicht in Energy (Oxford) (01.01.2022)
    “… Air conditioning system is extensively used in large commercial buildings. The fast and accurate building cooling load forecasting is the basis for improving …”
    Volltext
    Journal Article
  6. 6

    Hybrid forecasting model of building cooling load based on combined neural network von Gao, Zhikun, Yang, Siyuan, Yu, Junqi, Zhao, Anjun

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 15.06.2024
    Veröffentlicht in Energy (Oxford) (15.06.2024)
    “… ) and long short-term memory neural network (BAS-LSTM) optimized by beetle antennae search algorithm is proposed for building cooling load prediction …”
    Volltext
    Journal Article
  7. 7

    Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings von Dasi, He, Ying, Zhang, Ashab, MD Faisal Bin

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 15.03.2024
    Veröffentlicht in Energy (Oxford) (15.03.2024)
    “… Accurate prediction of heating and cooling loads in residential buildings is crucial for both researchers and practitioners …”
    Volltext
    Journal Article
  8. 8

    A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism von Yan, Xiuying, Ji, Xingxing, Meng, Qinglong, Sun, Hang, Lei, Yu

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 01.04.2024
    Veröffentlicht in Energy (Oxford) (01.04.2024)
    “… Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management …”
    Volltext
    Journal Article
  9. 9

    Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework von He, Wei, Hua, Rui, Xiao, Yulong, Liu, Yuce, Zhou, Chaohui, Li, Chaoshun

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.11.2025
    Veröffentlicht in Energies (Basel) (01.11.2025)
    “… To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA …”
    Volltext
    Journal Article
  10. 10

    Multiple Load Forecasting of Integrated Energy System Based on Sequential-Parallel Hybrid Ensemble Learning von You, Wenxia, Guo, Daopeng, Wu, Yonghua, Li, Wenwu

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.04.2023
    Veröffentlicht in Energies (Basel) (01.04.2023)
    “… In order to simultaneously reduce the prediction bias and variance, a hybrid ensemble learning method for load forecasting of an integrated energy system combining sequential ensemble learning …”
    Volltext
    Journal Article
  11. 11
  12. 12

    Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system von Fu, Guoyin

    ISSN: 0360-5442, 1873-6785
    Veröffentlicht: Oxford Elsevier Ltd 01.04.2018
    Veröffentlicht in Energy (Oxford) (01.04.2018)
    “… Therefore, a novel deep learning based hybrid approach is originally proposed in this paper for deterministic cooling load forecasting with high accuracy …”
    Volltext
    Journal Article
  13. 13

    Hybrid prediction model for cold load in large public buildings based on mean residual feedback and improved SVR von Liu, Haiyan, Yu, Junqi, Dai, Junwei, Zhao, Anjun, Wang, Meng, Zhou, Meng

    ISSN: 0378-7788
    Veröffentlicht: Elsevier B.V 01.09.2023
    Veröffentlicht in Energy and buildings (01.09.2023)
    “… •TGRF is proposed for mean residual feedback to improve the model accuracy.•SSA is improved using three strategies to enhance the algorithm performance …”
    Volltext
    Journal Article
  14. 14

    Multi-Energy Load Prediction Method for Integrated Energy System Based on Fennec Fox Optimization Algorithm and Hybrid Kernel Extreme Learning Machine von Shen, Yang, Li, Deyi, Wang, Wenbo

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Switzerland MDPI AG 17.08.2024
    Veröffentlicht in Entropy (Basel, Switzerland) (17.08.2024)
    “… the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA …”
    Volltext
    Journal Article
  15. 15

    Research on cooling load estimation through optimal hybrid models based on Naive Bayes von Xu, Ying

    ISSN: 1110-1903, 2536-9512
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
    Veröffentlicht in Journal of engineering and applied science (Online) (01.12.2024)
    “… Traditional methods simplify real-world complexities, highlighting artificial intelligence’s role in precise cooling load forecasting for energy-efficient building management …”
    Volltext
    Journal Article
  16. 16

    Research on ultra-short-term load forecasting method of oil and gas field integrated energy system based on hybrid neural network von Zhang, Zhao, Dong, Dezhi, Lv, Lili, Peng, Liyuan, Li, Bing, Peng, Miao, Cheng, Tingting

    ISSN: 0948-7921, 1432-0487
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
    Veröffentlicht in Electrical engineering (01.10.2025)
    “… Aiming at the source-network-load coordination requirements of distributed new energy and cooling, heating and electricity loads in oil and gas fields, this paper proposes an ultra-short-term load …”
    Volltext
    Journal Article
  17. 17

    Forecasting heating and cooling loads of buildings: a comparative performance analysis von Roy, Sanjiban Sekhar, Samui, Pijush, Nagtode, Ishan, Jain, Hemant, Shivaramakrishnan, Vishal, Mohammadi-ivatloo, Behnam

    ISSN: 1868-5137, 1868-5145
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
    “… Heating load and cooling load forecasting are crucial for estimating energy consumption and improvement of energy performance during the design phase of buildings …”
    Volltext
    Journal Article
  18. 18

    Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting von Li, Wenqiang, Gong, Guangcai, Fan, Houhua, Peng, Pei, Chun, Liang

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 15.07.2020
    Veröffentlicht in Applied energy (15.07.2020)
    “… (subjective and objective) user preferences.•Multi-objective decision making algorithms (MODMA) are used in option optimization …”
    Volltext
    Journal Article
  19. 19

    Dynamic forecast of cooling load and energy saving potential based on Ensemble Kalman Filter for an institutional high-rise building with hybrid ventilation von Hou, Danlin, Lin, Cheng-Chun, Katal, Ali, Wang, Liangzhu (Leon)

    ISSN: 1996-3599, 1996-8744
    Veröffentlicht: Beijing Tsinghua University Press 01.12.2020
    Veröffentlicht in Building simulation (01.12.2020)
    “… Combining natural and mechanical ventilation, hybrid ventilation is an effective approach to reduce cooling energy consumption …”
    Volltext
    Journal Article
  20. 20

    Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach von Mahmood, Farhat, Govindan, Rajesh, Yang, David, Bermak, Amine, Al-Ansari, Tareq

    ISSN: 0143-0750, 2162-8246
    Veröffentlicht: Taylor & Francis 31.12.2022
    Veröffentlicht in International journal of ambient energy (31.12.2022)
    “… Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year …”
    Volltext
    Journal Article