Suchergebnisse - Heterogeneous graph autoencoder

  1. 1

    NodeHGAE: Node-oriented heterogeneous graph autoencoder von Zhu, Xiangkai, Li, Chao, Yan, Yeyu, Zhao, Zhongying, Duan, Hua, Zeng, Qingtian

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.11.2025
    Veröffentlicht in Information sciences (01.11.2025)
    “… Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional vector representations, and simultaneously reconstruct the original graph structure …”
    Volltext
    Journal Article
  2. 2

    Conditional Enhanced Variational Autoencoder-Heterogeneous Graph Attention Neural Network: A Novel Fault Diagnosis Method for Electric Rudders Based on Heterogeneous Information von Cao, Ximing, Yang, Ruifeng, Guo, Chenxia, Qin, Hao

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 01.01.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (01.01.2024)
    “… In machine fault diagnosis, despite the wealth of information multi-sensor data provide for constructing high-quality graphs, existing graph data-driven diagnostic methods face challenges posed …”
    Volltext
    Journal Article
  3. 3

    Hgae: Heterogeneous Graph Autoencoder-Based Service Bundle Recommendations for Efficient Mashup Development von Sun, Kaipu, Wang, Xuanye, Xi, Meng, Wu, Yangyang, Pan, Xiaohua, Zhang, Jinshan, Li, Ying, Ma, Kun, Yin, Jianwei

    ISSN: 2836-3868
    Veröffentlicht: IEEE 07.07.2025
    “… In this work, we propose an innovative message-passing model, a Heterogeneous Graph AutoEncoderbased service bundle recommendation model (HGAE …”
    Volltext
    Tagungsbericht
  4. 4

    Deceptive reviewer group detection using self-adversarial variational autoencoder: a heterogeneous graph-based approach von Maurya, Sushil Kumar, Singh, Dinesh

    ISSN: 0219-1377, 0219-3116
    Veröffentlicht: London Springer London 01.11.2025
    Veröffentlicht in Knowledge and information systems (01.11.2025)
    “… by completing the user-review-product graph. To accomplish this, we propose an integrated approach comprising three key components …”
    Volltext
    Journal Article
  5. 5

    V-GMR: a variational autoencoder-based heterogeneous graph multi-behavior recommendation model von Yang, Haoqin, Rang, Ran, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Guo, Maozu, Sun, Jiaqi

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.02.2024
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.02.2024)
    “… In this paper, we propose a variational autoencoder (VAE) and graph-based heterogeneous multibehavior recommendation model (V-GMR …”
    Volltext
    Journal Article
  6. 6

    VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder von Zhang, Chen, Sun, Jiaqi, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Che, Kai

    ISSN: 1913-2751, 1867-1462, 1867-1462
    Veröffentlicht: Germany 21.08.2025
    “… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions …”
    Volltext
    Journal Article
  7. 7

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data von Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 28.10.2025
    Veröffentlicht in Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE …”
    Weitere Angaben
    Journal Article
  8. 8

    GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-Based Graph Autoencoder von Wang, Mengdi, Lei, Xiujuan, Liu, Lian, Chen, Jianrui, Wu, Fang-Xiang

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.11.2025
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.11.2025)
    “… -modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction …”
    Volltext
    Journal Article
  9. 9

    SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival von Pan, Liangrui, Peng, Yijun, Li, Yan, Wang, Xiang, Liu, Wenjuan, Xu, Liwen, Liang, Qingchun, Peng, Shaoliang

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.04.2024
    Veröffentlicht in Computers in biology and medicine (01.04.2024)
    “… This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival …”
    Volltext
    Journal Article
  10. 10

    GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network von Liu, Zhixian, Chen, Qingfeng, Lan, Wei, Pan, Haiming, Hao, Xinkun, Pan, Shirui

    ISSN: 1664-8021, 1664-8021
    Veröffentlicht: Switzerland Frontiers Media S.A 09.04.2021
    Veröffentlicht in Frontiers in genetics (09.04.2021)
    “… In this article, a graph autoencoder approach for DTI prediction (GADTI) was proposed to discover potential interactions between drugs and targets using a heterogeneous network, which integrates diverse drug-related and target-related datasets …”
    Volltext
    Journal Article
  11. 11

    Drug repositioning based on heterogeneous networks and variational graph autoencoders von Lei, Song, Lei, Xiujuan, Liu, Lian

    ISSN: 1663-9812, 1663-9812
    Veröffentlicht: Switzerland Frontiers Media S.A 21.12.2022
    Veröffentlicht in Frontiers in pharmacology (21.12.2022)
    “…  years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder …”
    Volltext
    Journal Article
  12. 12

    Predicting potential microbe-disease associations based on heterogeneous graph attention network and deep sparse autoencoder von Wang, Bo, Zhao, Wenlong, Du, Xiaoxin, Zhang, Jianfei, Zhang, Chunyu, Wang, Liping, He, Yang

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.05.2025
    Veröffentlicht in Engineering applications of artificial intelligence (01.05.2025)
    “… We propose a computational framework called graph attention convolutional deep sparse autoencoder microbe-disease association (GCDSAEMDA …”
    Volltext
    Journal Article
  13. 13

    AEGCN: An Autoencoder-Constrained Graph Convolutional Network von Ma, Mingyuan, Na, Sen, Wang, Hongyu

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 07.04.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (07.04.2021)
    “… We consider applying our model on both homogeneous graphs and heterogeneous graphs. For homogeneous graphs, the autoencoder approximates to the adjacency matrix …”
    Volltext
    Journal Article
  14. 14

    Multi-Head Graph Attention Adversarial Autoencoder Network for Unsupervised Change Detection Using Heterogeneous Remote Sensing Images von Jia, Meng, Lou, Xiangyu, Zhao, Zhiqiang, Lu, Xiaofeng, Shi, Zhenghao

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 24.07.2025
    Veröffentlicht in Remote sensing (Basel, Switzerland) (24.07.2025)
    “… To address this issue, we propose the Multi-Head Graph Attention Mechanism (MHGAN), designed to achieve accurate detection of surface changes in heterogeneous remote sensing images …”
    Volltext
    Journal Article
  15. 15

    Heterogeneous Graph Masked Autoencoders von Tian, Yijun, Dong, Kaiwen, Zhang, Chunhui, Zhang, Chuxu, Chawla, Nitesh V

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.02.2023
    Veröffentlicht in arXiv.org (10.02.2023)
    “… ? In light of this, we study the problem of generative SSL on heterogeneous graphs and propose HGMAE, a novel heterogeneous graph masked autoencoder model to address these challenges …”
    Volltext
    Paper
  16. 16

    Variational Graph Autoencoder for Heterogeneous Information Networks with Missing and Inaccurate Attributes von Zhao, Yige, Yu, Jianxiang, Cheng, Yao, Yu, Chengcheng, Liu, Yiding, Li, Xiang, Wang, Shuaiqiang

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.11.2024
    Veröffentlicht in arXiv.org (19.11.2024)
    “… Heterogeneous Information Networks (HINs), which consist of various types of nodes and edges, have recently demonstrated excellent performance in graph mining …”
    Volltext
    Paper
  17. 17

    Exploring Microbe-Drug Association Prediction via Multi-Attribute Dual-Decoder Graph Autoencoder von Liu, Wei, Deng, Xiangcheng, Sun, Xingen, Lu, Xu, Chen, Xing

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.11.2025
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.11.2025)
    “… In this work, we propose a method called exploring microbe-drug association prediction via multi-attribute dual-decoder graph autoencoder (MDGAEMDA …”
    Volltext
    Journal Article
  18. 18

    Dataset Recommendation via Variational Graph Autoencoder von Altaf, Basmah, Akujuobi, Uchenna, Yu, Lu, Zhang, Xiangliang

    ISSN: 2374-8486
    Veröffentlicht: IEEE 01.11.2019
    “… This paper targets on designing a query-based dataset recommendation system, which accepts a query denoting a user's research interest as a set of research …”
    Volltext
    Tagungsbericht
  19. 19

    GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder von Tan, Yaqin, Zou, Juan, Kuang, Linai, Wang, Xiangyi, Zeng, Bin, Zhang, Zhen, Wang, Lei

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 18.11.2022
    Veröffentlicht in BMC bioinformatics (18.11.2022)
    “… Results In this work, we proposed a novel computational model named GSAMDA based on the graph attention network and sparse autoencoder to infer latent microbe–drug associations …”
    Volltext
    Journal Article
  20. 20

    MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder von Wang, Ying, Gao, Ying-Lian, Wang, Juan, Li, Feng, Liu, Jin-Xing

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.07.2023
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.07.2023)
    “… Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA …”
    Volltext
    Journal Article