Suchergebnisse - Hardware Integrated circuits Reconfigurable logic and FPGAs
-
1
DSPlacer: DSP Placement for FPGA-based CNN Accelerator
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Deploying convolutional neural networks (CNNs) on hardware platforms like Field Programmable Gate Arrays (FPGAs …”
Volltext
Tagungsbericht -
2
Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks
ISSN: 1558-2434Veröffentlicht: ACM 01.11.2016Veröffentlicht in Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design (01.11.2016)“… In this paper we design and implement Caffeine, a hardware/software co-designed library to efficiently accelerate the entire CNN on FPGAs …”
Volltext
Tagungsbericht -
3
Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This …”
Volltext
Tagungsbericht -
4
SGX-FPGA: Trusted Execution Environment for CPU-FPGA Heterogeneous Architecture
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… To fill the gap, we present SGX-FPGA, a trusted hardware isolation path enabling the first FPGA TEE by bridging SGX enclaves and FPGAs in the heterogeneous CPU-FPGA architecture …”
Volltext
Tagungsbericht -
5
FPGA-TrustZone: Security Extension of TrustZone to FPGA for SoC-FPGA Heterogeneous Architecture
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Experiments on real SoC-FPGA hardware development boards show that FPGA-TrustZone provides high security with low performance overhead …”
Volltext
Tagungsbericht -
6
BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight Matrices
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… platforms.To tackle this challenge, we propose BlockGNN, a software-hardware co-design approach to realize efficient GNN acceleration …”
Volltext
Tagungsbericht -
7
High-Performance FPGA-based Accelerator for Bayesian Neural Networks
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… This work proposes a novel FPGA based hardware architecture to accelerate BNNs inferred through Monte Carlo Dropout …”
Volltext
Tagungsbericht -
8
An Enhanced Data Packing Method for General Matrix Multiplication in Brakerski/Fan-Vercauteren Scheme
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Furthermore, we design specialized hardware …”
Volltext
Tagungsbericht -
9
Configurable DSP-Based CAM Architecture for Data-Intensive Applications on FPGAs
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… They have been used in many domains, such as networking, databases, and graph processing. Field-programmable gate arrays (FPGAs …”
Volltext
Tagungsbericht -
10
XShift: FPGA-efficient Binarized LLM with Joint Quantization and Sparsification
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… a specialized inference framework. In response, we introduce XShift, an algorithm-hardware co-design framework optimized for efficient binarized LLM inference on FPGAs …”
Volltext
Tagungsbericht -
11
WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization
ISSN: 1558-2434Veröffentlicht: ACM 29.10.2022Veröffentlicht in 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“… Recent proposals on hardware-optimal neural network architectures suggest that AdderNet with a lightweight ℓ …”
Volltext
Tagungsbericht -
12
DuoQ: A DSP Utilization-aware and Outlier-free Quantization for FPGA-based LLMs Acceleration
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… To address this problem, we introduce DuoQ, an FPGA-oriented algorithm-hardware co-design framework …”
Volltext
Tagungsbericht -
13
April: Accuracy-Improved Floating-Point Approximation For Neural Network Accelerators
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Floatingpoint approximation, such as Mitchell's logarithm, enables floating-point multiplication using simpler integer additions, thereby improving hardware efficiency …”
Volltext
Tagungsbericht -
14
An Efficient Bit-level Sparse MAC-accelerated Architecture with SW/HW Co-design on FPGA
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… The reconfigurable platform offers possibilities for identifying the bitlevel unstructured redundancy during inference with different DNN models …”
Volltext
Tagungsbericht -
15
FLAG: An FPGA-Based System for Low-Latency GNN Inference Service Using Vector Quantization
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… In this paper, we propose FLAG, an FPGA-based GNN inference serving system using vector quantization …”
Volltext
Tagungsbericht -
16
An Algorithm-Hardware Co-design Based on Revised Microscaling Format Quantization for Accelerating Large Language Models
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… However, deploying such a new format into existing hardware systems is still challenging, and the dominant solution for LLM inference at low precision is still low-bit quantization …”
Volltext
Tagungsbericht -
17
Classifying Computations on Multi-Tenant FPGAs
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… Modern data centers leverage large FPGAs to provide low latency, high throughput, and low energy computation …”
Volltext
Tagungsbericht -
18
KLiNQ: Knowledge Distillation-Assisted Lightweight Neural Network for Qubit Readout on FPGA
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… While current methods, including deep neural networks, enhance readout accuracy, they typically lack support for mid-circuit measurements essential for quantum error correction, and they usually rely …”
Volltext
Tagungsbericht -
19
CoSPARSE: A Software and Hardware Reconfigurable SpMV Framework for Graph Analytics
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… reconfiguration as a synergistic solution to accelerate SpMV-based graph analytics algorithms. Building on previously proposed general-purpose reconfigurable hardware …”
Volltext
Tagungsbericht -
20
ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization
Veröffentlicht: IEEE 01.10.2022Veröffentlicht in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (01.10.2022)“… Even though this line of work brings algorithmic benefits, it also introduces significant hardware overheads due to variable-length encoding …”
Volltext
Tagungsbericht