Suchergebnisse - Fully convolutional encoder–decoder networks

Andere Suchmöglichkeiten:

  1. 1

    Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional EncoderDecoder Network von Islam, M. M. Manjurul, Kim, Jong-Myon

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Basel MDPI AG 30.09.2019
    Veröffentlicht in Sensors (Basel, Switzerland) (30.09.2019)
    “… It consists of a fully convolutional neural network (FCN) with an encoder and decoder framework for semantic segmentation, which performs pixel-wise classification to accurately detect cracks …”
    Volltext
    Journal Article
  2. 2

    Optimizing the Hyperparameters of Fully Convolutional Encoder-Decoder Networks for SAR Image Segmentation von Liu, Yuanyue, Zhao, Jin, Fan, Jianchao, Wang, Jun

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE geoscience and remote sensing letters (2024)
    “… Fully convolutional encoder-decoder networks have been developed for the segmentation of sensing synthetic aperture radar (SAR) images …”
    Volltext
    Journal Article
  3. 3

    Denoising Raman spectra using fully convolutional encoderdecoder network von Loc, Irem, Kecoglu, Ibrahim, Unlu, Mehmet Burcin, Parlatan, Ugur

    ISSN: 0377-0486, 1097-4555
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.08.2022
    Veröffentlicht in Journal of Raman spectroscopy (01.08.2022)
    “… × lower exposure times. In this work, we developed fully convolutional encoderdecoder architecture (FCED …”
    Volltext
    Journal Article
  4. 4

    Hybrid Attention-Based EncoderDecoder Fully Convolutional Network for PolSAR Image Classification von Fang, Zheng, Zhang, Gong, Dai, Qijun, Xue, Biao, Wang, Peng

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.01.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.01.2023)
    “… In this paper, a hybrid attention-based encoderdecoder fully convolutional network (HA-EDNet) is presented for PolSAR classification …”
    Volltext
    Journal Article
  5. 5

    LF-SegNet: A Fully Convolutional EncoderDecoder Network for Segmenting Lung Fields from Chest Radiographs von Mittal, Ajay, Hooda, Rahul, Sofat, Sanjeev

    ISSN: 0929-6212, 1572-834X
    Veröffentlicht: New York Springer US 01.07.2018
    Veröffentlicht in Wireless personal communications (01.07.2018)
    “… This paper presents a deep learning-based fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs …”
    Volltext
    Journal Article
  6. 6

    Microseismic Signal Denoising and Separation Based on Fully Convolutional EncoderDecoder Network von Zhang, Hang, Ma, Chunchi, Pazzi, Veronica, Zou, Yulin, Casagli, Nicola

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.09.2020
    Veröffentlicht in Applied sciences (01.09.2020)
    “… In this paper, an advanced denoising method based on a fully convolutional encoderdecoder neural network is proposed …”
    Volltext
    Journal Article
  7. 7

    Autonomous Concrete Crack Semantic Segmentation Using Deep Fully Convolutional EncoderDecoder Network in Concrete Structures Inspection von Pu, Rundong, Ren, Guoqian, Li, Haijiang, Jiang, Wei, Zhang, Jisong, Qin, Honglei

    ISSN: 2075-5309, 2075-5309
    Veröffentlicht: Basel MDPI AG 01.11.2022
    Veröffentlicht in Buildings (Basel) (01.11.2022)
    “… This research focuses on image-based concrete crack pattern recognition utilizing a deep convolutional neural network (DCNN) and an encoder …”
    Volltext
    Journal Article
  8. 8

    Very deep fully convolutional encoderdecoder network based on wavelet transform for art image fusion in cloud computing environment von Chen, Tong, Yang, Juan

    ISSN: 1868-6478, 1868-6486
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
    Veröffentlicht in Evolving systems (01.04.2023)
    “… Therefore, we propose a very deep fully convolutional encoderdecoder network based on wavelet transform for art image fusion in the cloud computing environment …”
    Volltext
    Journal Article
  9. 9

    Object Contour Detection with a Fully Convolutional Encoder-Decoder Network von Jimei Yang, Price, Brian, Cohen, Scott, Honglak Lee, Ming-Hsuan Yang

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2016
    “… We develop a deep learning algorithm for contour detection with a fully convolutional encoder-decoder network …”
    Volltext
    Tagungsbericht
  10. 10

    Inversion and identification of vertical track irregularities considering the differential subgrade settlement based on fully convolutional encoder-decoder network von Chen, Mei, Zhu, Shengyang, Zhai, Wanming, Sun, Yu, Zhang, Qinglai

    ISSN: 0950-0618, 1879-0526
    Veröffentlicht: Elsevier Ltd 27.02.2023
    Veröffentlicht in Construction & building materials (27.02.2023)
    “… •A vehicle system acceleration-based method for track irregularity inversion is developed.•A 1-D fully convolutional encoder-decoder network is designed and the effectiveness and robustness are demonstrated.•A time …”
    Volltext
    Journal Article
  11. 11

    A Fully Convolutional Encoder-Decoder Spatial-Temporal Network for Real-Time Background Subtraction von Qiu, Mingkai, Li, Xiying

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… In this paper, we propose a fully convolutional encoder-decoder spatial-temporal network (FCESNet) to achieve real-time background subtraction …”
    Volltext
    Journal Article
  12. 12

    Automatic Building Extraction From High-Resolution Aerial Imagery via Fully Convolutional Encoder-Decoder Network With Non-Local Block von Wang, Shengsheng, Hou, Xiaowei, Zhao, Xin

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… Recently, various methods based on deep learning, especially the fully convolution networks, achieve impressive scores in this challenging semantic segmentation task …”
    Volltext
    Journal Article
  13. 13

    Spatio-Temporal Encoder-Decoder Fully Convolutional Network for Video-Based Dimensional Emotion Recognition von Du, Zhengyin, Wu, Suowei, Huang, Di, Li, Weixin, Wang, Yunhong

    ISSN: 1949-3045, 1949-3045
    Veröffentlicht: Piscataway IEEE 01.07.2021
    Veröffentlicht in IEEE transactions on affective computing (01.07.2021)
    “… In this paper, we present a novel encoder-decoder framework to tackle this problem. It adopts a fully convolutional design with the cascaded 2D convolution based spatial …”
    Volltext
    Journal Article
  14. 14

    Enhancing time‐frequency resolution via deep‐learning framework von Wang, Zixin, Chen, Lixing, Xiao, Peng, Xu, Lingji, Li, Zhenglin

    ISSN: 1751-9675, 1751-9683
    Veröffentlicht: 01.04.2023
    Veröffentlicht in IET signal processing (01.04.2023)
    “… ‐convolutional encoderdecoder network is trained to preserve effective features and acquire the optimal time‐frequency …”
    Volltext
    Journal Article
  15. 15

    Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease von Khan, Abdul Qadir, Sun, Guangmin, Li, Yu, Bilal, Anas, Manan, Malik Abdul

    ISSN: 1546-2226, 1546-2218, 1546-2226
    Veröffentlicht: Henderson Tech Science Press 2023
    Veröffentlicht in Computers, materials & continua (2023)
    “… To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network (FCEDN …”
    Volltext
    Journal Article
  16. 16

    A novel deep fully convolutional encoder-decoder network and similarity analysis for English education text event clustering analysis von Jing, Zhenping

    ISSN: 1820-0214, 2406-1018
    Veröffentlicht: 01.09.2024
    Veröffentlicht in Computer Science and Information Systems (01.09.2024)
    “… Therefore, we propose a novel deep fully convolutional encoder-decoder network and similarity analysis for English education text event clustering analysis in online social networks …”
    Volltext
    Journal Article
  17. 17

    Pneumothorax detection and segmentation from chest X-ray radiographs using a patch-based fully convolutional encoder-decoder network von Dumbrique, Jakov Ivan S., Hernandez, Reynan B., Cruz, Juan Miguel L., Pagdanganan, Ryan M., Naval, Prospero C.

    ISSN: 2673-8740, 2673-8740
    Veröffentlicht: Switzerland Frontiers Media S.A 11.12.2024
    Veröffentlicht in Frontiers in radiology (11.12.2024)
    “… We propose a novel architecture that combines the advantages of fully convolutional neural networks (FCNNs …”
    Volltext
    Journal Article
  18. 18

    A fully-convolutional residual encoder-decoder neural network to localize breast cancer on histopathology images von Farajzadeh, Nacer, Sadeghzadeh, Nima, Hashemzadeh, Mahdi

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: Oxford Elsevier Ltd 01.08.2022
    Veröffentlicht in Computers in biology and medicine (01.08.2022)
    “… Cancer detection in its early stages may allow patients to receive the proper treatment and save lives along with recovering the routine lifestyles. Breast …”
    Volltext
    Journal Article
  19. 19

    Underwater Acoustic Signal Noise Reduction Based on a Fully Convolutional Encoder-Decoder Neural Network von Song, Yongqiang, Chu, Qian, Liu, Feng, Wang, Tao, Shen, Tongsheng

    ISSN: 1672-5182, 1993-5021, 1672-5174
    Veröffentlicht: Heidelberg Science Press 01.12.2023
    Veröffentlicht in Journal of Ocean University of China (01.12.2023)
    “… A fully convolutional encoder-decoder neural network (FCEDN) is proposed to address the issue of noise reduction in underwater acoustic signals …”
    Volltext
    Journal Article
  20. 20

    Detection of black box signal based on encoder-decoder fully convolutional networks von Ji, Huazhong, Zhou, Jie, Pan, Xiang

    Veröffentlicht: IEEE 05.10.2020
    Veröffentlicht in Global Oceans 2020: Singapore – U.S. Gulf Coast (05.10.2020)
    “… Inspired by the successful application of fully convolutional networks (FCN) in the field of pixel-level image classification, an encoder-decoder network with skip …”
    Volltext
    Tagungsbericht